Energy Transition Systems and Technologies, MSc

Energy Transition Systems and Technologies, MSc

Introduction

The transition to cleaner, more sustainable, energy requires a fundamental restructuring of our entire energy infrastructure while ensuring continued access to reliable and affordable energy.

This is the challenge energy engineers face today and what this programme sets out to address by providing you with an in-depth understanding of the diverse technical and non-technical challenges associated with the transition to net zero.

This programme is also available to study part-time online.

Study Information

Study Options

Learning Mode
On Campus Learning
Degree Qualification
MSc
Duration
12 months
Study Mode
Full Time
Start Month
January or September
Location of Study
Aberdeen

In recent years, the transition towards sustainable energy systems has gathered huge momentum. Yet, despite the substantial progress being made in renewable generation, the transition to greener more sustainable energy continues to pose significant technological, commercial and political challenges for businesses and governments.

Energy transition engineers, as well as policy-makers, are faced with the challenge of redesigning our entire energy infrastructure while ensuring continued access to reliable and affordable energy at times of rapid and substantial swings in supply or demand.

This programme is designed to address this challenge by combining a detailed knowledge of the technical and commercial aspects of Low Carbon Technologies with a broader systems-thinking approach to understanding the complex and interconnected nature of multi-energy systems.

You will learn about the latest technological innovations in areas such as wind, tidal and hydrogen, energy storage, carbon storage and biofuels and engage with the wider economic and political aspects of the energy transition.

Based in the School of Engineering, this MSc draws on much of the ground-breaking research being conducted within the Centre for Energy Transition (CET), along with expert contributions from the School of Geosciences, the School of Business and the School of Law.

Aberdeen is an exciting place to study the energy transition as the city is at the forefront of the UK's net zero strategy with multiple major energy transition projects already up and running including Equinor’s Hywind project, the European Offshore Wind Deployment Centre, and the new Energy Transition Zone.

Available Programmes of Study

MSc

Energy Transition Systems and Technologies

Qualification Duration Learning Mode Study Mode Start Month Location  
MSc 12 months On Campus Learning Full Time September Aberdeen More
MSc 12 months On Campus Learning Full Time January Aberdeen More

Programme Fees

Please refer to our Tuition Fees page for fee information for this programme, or contact study@abdn.ac.uk.

Semester 1

Compulsory Courses

Getting Started at the University of Aberdeen (PD5506)

This course, which is prescribed for all taught postgraduate students, is studied entirely online, is studied entirely online, takes approximately 2-3 hours to complete and can be taken in one sitting, or spread across the first 4 weeks of term.

Topics include University orientation overview, equality & diversity, MySkills, health, safety and cyber security, and academic integrity.

Successful completion of this course will be recorded on your Transcript as ‘Achieved’.

Fundamentals of Energy Transition (EG556U)

The course will provide students an overview of the energy transition, opportunities, and key challenges to reach net-zero carbon societies. It will introduce concepts and ideas useful in more advanced courses involving energy systems based on renewable sources. These will include fundamentals of renewable technologies, economic parameters, basic legal regulations, and societal implications of implementing energy transition projects.

Energy Conversion and Storage (EG551J)

15 Credit Points

To gain an understanding of the need to and the efficiency behind conversion of energy form one form to another and in the need to store energy in distinct forms. To understand the reasoning behind energy losses and how they might be minimised or overcome.

Energy Systems Integration (EG554T)

15 Credit Points

This course is one of the key courses for MSc Energy Transition. The aim of this course is to provide students with knowledge and skills of critical analysis, multi-criteria assessment and planning of various multi-energy systems by taking into account system integration considerations. The course will provide the opportunity of putting the acquired knowledge and skills into practice by delivering hands on individual and group system integration projects.

Optional Courses

Select ONE from:

  • EG552U Marine and Wind Energy (15 Credits Points)
  • EG552S Legislation, Economics and Safety (15 Credits Points)

Plus ONE from:

  • EG551K Renewable Energy Integration to Grid (15 Credits Points)
  • EG555S Sustainable Engineering Challenges (15 Credits Points)
Marine and Wind Energy (EG552U)

15 Credit Points

To provide an understanding of the physical principles, technologies and systems associated with renewable energy generation from wind and marine sources. To provide an understanding of the position of these sources of energy in the current and future global energy requirements and the technical challenges in meeting the future energy demand

Legislation, Economics and Safety (EG552S)

15 Credit Points

The course aims to develop a broad understanding about the renewable energy legislation and of the relevant aspects of economics and safety.

Renewable Energy Integration to Grid (EG551K)

15 Credit Points

The course aims to develop a broad understanding about the challenges and requirements of integrating renewable generators (RE) to grid, how these requirements can be met using converters, and high voltage direct current (HVDC) as a method of connecting RE to AC grids.

Semester 2

Compulsory Courses

Carbon Capture, Utilisation and Storage (Ccus) (EG504K)

15 Credit Points

To develop a broader understanding of carbon capture, its pipeline transportation, utilization and safe underground storage (CCUS) in the geological formations, in terms of the fundamental concepts, their practical applications and their implementation in the ongoing projects.

Energy from Biomass (EG50M1)

15 Credit Points

This course describes in detail the technologies used to convert biomass into energy. The course covers combustion, gasification, pyrolysis, anaerobic digestion, bioethanol and biodiesel.

Optional Courses

Select ONE from the following:

  • Solar Energy (EG503V)
  • Geothermal and Hydro Energy (EG503A)

Plus, ONE from the following:

  • Introduction to Energy Economics (BU5053)
  • Introduction to GIS Tools, Techniques Cartography and Geovisualisation (GG5065)
Solar Energy (EG503V)

15 Credit Points

This course aims to provide a broad understanding of generation from solar sources, the associated technologies and the main technical challenges.

Geothermal and Hydro Energy (EG503A)

15 Credit Points

This course examines the renewable energy industries involving geothermal and hydro sources including resources, physical principles, technologies, environmental considerations and impact, integration into the grid, commercial development, and future challenges facing the industries.

Introduction to GIS Tools, Techniques, Cartography & Geovisualisation (GG5065)

15 Credit Points

This module will introduce students to remote sensing techniques and fundamental geospatial tools for displaying and analysing geospatial data. This will include: navigation, measurement, spatial queries, geocoding, scripting, buffering, digitising, and overlay analysis. Several ‘real world’ examples will be used to illustrate the application of the tools for data exploration, spatial analyses, mapping, and visualisation. Emphasis will be placed on obtaining a sound understanding of the principles of each technique, as well as the importance of selecting the correct approach to a problem, analysing the data, and interpretation of the results.

Introduction to Energy Economics (BU5053)

15 Credit Points

This course introduces key techniques from economics and finance to allowing understanding of the basics of business decision making within the energy industries and the economic implications of key energy policies. We consider basic financial concepts such as: present value, the opportunity cost of capital and their role in business decision making in energy industries. We also consider key economic elements of markets and how the economic environment structures the way in which businesses make decisions and energy market outcomes.

Semester 3

Compulsory Courses

MSc Individual Project (EG59M2)

60 Credit Points

The MSc Individual Project is an independent piece of research based on a topic related to a student’s degree programme. Students are encouraged to focus on a problem confronting industry or a related area. The individual project provides students with an opportunity to demonstrate how the in-depth skills and knowledge they have gained during the taught courses can be used to provide solutions to practical problems. The individual project should contain a degree of original research.

Programme Fees

Fee information
Fee category Cost
EU / International students £26,250
Tuition Fees for 2025/26 Academic Year
UK £11,100
Tuition Fees for 2024/25 Academic Year

We will endeavour to make all course options available. However, these may be subject to change - see our Student Terms and Conditions page.

Fee Information

Additional Fee Information

  • Fees for individual programmes can be viewed in the Programmes section above.
  • In exceptional circumstances there may be additional fees associated with specialist courses, for example field trips. Any additional fees for a course can be found in our Catalogue of Courses.
  • For more information about tuition fees for this programme, including payment plans and our refund policy, please visit our Tuition Fees page.

Scholarships

Self-funded international students enrolling on postgraduate taught (PGT) programmes will receive one of our Aberdeen Global Scholarships, ranging from £3,000 to £8,000, depending on your domicile country. Learn more about the Aberdeen Global Scholarships here.

To see our full range of scholarships, visit our Funding Database.

Why Study Energy Transition Systems and Technologies?

  • This is the first programme of its kind in the UK focusing on the transition from fossil fuels to renewables through the integration of Low Carbon Technologies (LCTs) into our current and future energy systems.

  • This programme combines technical knowledge of individual Low Carbon Technologies (LCTs) like renewable energy, including wind, tidal, solar, hydrogen and biomass, with non-technical aspects such as economic and political developments.

  • You will take a systems thinking approach to energy transition, to understand complex and interconnected energy systems. The energy transition is resulting in the digitalisation of the whole energy system, meaning much more data and interconnectedness. Only a systems approach can embrace these changes.

  • You will also learn various relevant methods for system-level analysis, including Geographical Information Systems (GIS) and Energy System Analysis. These methods are augmented by technical, economic and environmental tools of analysis, which are used to assess and compare different technologies.

  • Aberdeen is a major international energy centre, and the School of Engineering is particularly known for world-class energy programmes in oil and gas, renewable energy and subsea engineering.

  • In recent years, non-hydrocarbon based energy has grown significantly in Aberdeen, mainly due to the large talent pool of energy engineers and scientists based in the Aberdeen region and the abundant wind and tidal energy resources off the Aberdeenshire coast.

  • Equinor selected Aberdeenshire as the location for Hywind, the world’s first floating wind farm. Vattenfal also chose Aberdeen as the location of the European Offshore Wind Deployment Centre, Scotland’s largest offshore wind test and demonstration facility. The pioneering Aberdeen Hydrogen Bus Project has created Europe’s largest hydrogen-powered bus fleet and the city's Energy Transition Zone fast track the development of Low Carbon Technologies.
  • Our location at the heart of the energy industry means that our programmes benefit from direct involvement from UK energy companies, as well as from overseas. This includes industry advisory panels, guest lectures, field trips, site visits, networking and careers events, and industry supported student projects.

  • Upon completion, students should have an overview of the key issues in energy transition, and be well equipped to address some of them with the taught methods (as they must in their final project).

Entry Requirements

Qualifications

The information below is provided as a guide only and does not guarantee entry to the University of Aberdeen.

2:1 (upper second class) UK Honours degree, or an Honours degree from a non-UK institution which is judged by the University to be of equivalent worth, in Engineering or a related field such as the natural sciences, physical sciences or mathematics.

or

2:2 (lower second class) UK Honours degree in Engineering or a related field, or equivalent with 5+ years relevant experience.

Academic Technology Approval Scheme (ATAS) certificate

The CAH3 code for this degree is CAH10-01-09. Students who need a visa to live or study in the UK must apply for ATAS clearance. The ATAS clearance certificate must be valid when you apply for a visa to enter the UK. To find out if you need to apply for ATAS clearance, please visit https://www.gov.uk/guidance/academic-technology-approval-scheme

Please enter your country to view country-specific entry requirements.

English Language Requirements

To study for a Postgraduate Taught degree at the University of Aberdeen it is essential that you can speak, understand, read, and write English fluently. The minimum requirements for this degree are as follows:

IELTS Academic:

OVERALL - 6.5 with: Listening - 5.5; Reading - 5.5; Speaking - 5.5; Writing - 6.0

TOEFL iBT:

OVERALL - 90 with: Listening - 17; Reading - 18; Speaking - 20; Writing - 21

PTE Academic:

OVERALL - 62 with: Listening - 59; Reading - 59; Speaking - 59; Writing - 59

Cambridge English B2 First, C1 Advanced, C2 Proficiency:

OVERALL - 176 with: Listening - 162; Reading - 162; Speaking - 162; Writing - 169

Read more about specific English Language requirements here.

Document Requirements

You will be required to supply the following documentation with your application as proof you meet the entry requirements of this degree programme. If you have not yet completed your current programme of study, then you can still apply and you can provide your Degree Certificate at a later date.

Degree Transcript
a full transcript showing all the subjects you studied and the marks you have achieved in your degree(s) (original & official English translation)
Personal Statement
a detailed personal statement explaining your motivation for this particular programme

Aberdeen Global Scholarship

Eligible self-funded postgraduate taught (PGT) students will receive the Aberdeen Global Scholarship. Explore our Global Scholarships, including eligibility details, on our dedicated page.

Aberdeen Global Scholarships

Careers

There is an urgent, strong need to for properly trained and qualified professionals who are able to address the challenges associated with UN SDG Goal of “Affordable and Clean Energy”, and also the UK mission of achieving net-zero of greenhouse emission by 2050. Upon completion of the programme, you will have a good understanding of, and be well equipped to apply the methods and skills you have learned, to address the key challenges of the energy transition.

Graduates will be well placed to pursue careers across a wide range of industries, public sector organisations or academia. Typical employers for graduates of the programme include energy service providers, energy technology manufacturers, infrastructure (gas, heat, power) operators, utilities, aggregators, public sector organisations (local and national government, ministries) and many more.

Typical job roles rely on the critical systems thinking and detailed knowledge of the challenges and solutions for energy transitions. These include, for example:

  • Data Scientist/Analyst
  • Strategic Energy Advisor
  • Energy Planners
  • Energy System Operator
  • Energy Infrastructure Planner
  • Business Development Manager

Our Experts

Programme Coordinator
Dr Alfonso Martinez-Felipe

Information About Staff Changes

You will be taught by a range of experts including professors, lecturers, teaching fellows and postgraduate tutors. However, these may be subject to change - see our Student Terms and Conditions page.

Get in Touch

Contact Details

Address
Student Recruitment & Admissions
University of Aberdeen
University Office
Regent Walk
Aberdeen
AB24 3FX