Director of the Rowett Institute
- About
-
- Email Address
- jules.griffin@abdn.ac.uk
- Telephone Number
- +44 (0)1224 438663
- School/Department
- School of Medicine, Medical Sciences and Nutrition
Biography
My research focuses on the application of analytical chemistry to study metabolism at a global level in metabolic diseases. We have developed and applied metabolomics and lipidomics tools to investigate aspects of the metabolic syndrome and how nutrition interacts with health across the life course. This has included studies based on cell culture, model organisms, human diet intervention studies and epidemiology. At the centre of this research has been a desire to understand why fat metabolism can be so detrimental to the cell.
I received my D.Phil. in Biochemistry from the University of Oxford, where I used 13C NMR spectroscopy to study metabolism in the brain. My first Post-doctoral position applied similar approaches to study cardiac metabolism at Harvard Medical School and Massachusetts General Hospital. Returning to the UK I took up a second post-doctoral position at Imperial College London, joining during the early stages of the development of metabolomics/metabonomics. Here, I applied these new omic tools to understanding how fat metabolism impairs cell function and have been studying this subject ever since.
I was awarded a Royal Society University Research Fellowship and set up my own research group at the Department of Biochemistry, University of Cambridge in 2002. In 2011, I took up a joint position with MRC Human Nutrition Research and the University of Cambridge as a programme leader. This was a transformative appointment, allowing my group to move our focus from model systems into human nutrition and experimental medicine. We also developed a number of high throughput metabolomics and lipidomics tools for cohort studies to examine the metabolic syndrome. In 2019 I took up the Chair of Biological Chemistry at Imperial College London, joining the Imperial College Dementia Research Institute to study the contribution of lipid metabolism to neurodegenerative diseases. In July 2021 I joined the Rowett Institute, University of Aberdeen as Director.
Memberships and Affiliations
- Internal Memberships
-
Member of Aberdeen Cardiovascular and Diabetes Centre
Member of the Rowett Institute EDIT Committee
Chair of the Rowett Institute Executive Committee
- External Memberships
-
Fellow of the Royal Society of Chemistry.
Director and Secretary to the Metabolic Profiling Forum (metabomeeting).
Editorial board member for Genome Medicine and Metabolites.
Former President of the Metabolomics Society (2016-2020).
Latest Publications
Response to Letter to the Editor from Chen and Shan: "Moderate-intensity Combined Training Induces Lipidomic Changes in Individuals with Obesity and Type 2 Diabetes"
Journal of Clinical Endocrinology and Metabolism, dgae685Contributions to Journals: Comments and Debates- [ONLINE] DOI: https://doi.org/10.1210/clinem/dgae685
A lipidomic dataset for epidemiological studies of acute myocardial infarction
Data in brief, vol. 57, 110925Contributions to Journals: Articles- [ONLINE] DOI: https://doi.org/10.1016/j.dib.2024.110925
Beta-adrenergic agonism protects mitochondrial metabolism in the pancreatectomised rat heart
Scientific Reports, vol. 14, 19383Contributions to Journals: ArticlesWeight of evidence evaluation of the metabolism disrupting effects of triphenyl phosphate using an expert knowledge elicitation approach
Toxicology and Applied Pharmacology, vol. 489, 116995Contributions to Journals: ArticlesMulti-omics and imaging mass cytometry characterization of human kidneys to identify pathways and phenotypes associated with impaired kidney function.
Kidney International, vol. 106, no. 1, pp. 85-97Contributions to Journals: Articles
Prizes and Awards
Trapnell Research Fellow, King's College, Cambridge, 2003-2007.
Recipient of Agilent Thought Leader Award. 2016.
Honorary Professor at Imperial College London (2022-)
Visiting Professor at the University of Cagliari, Sardinia, Italy (2011-2012; 2015-2016; 2021-22).
- Research
-
Research Overview
My group has been at the centre of the development of metabolomics as a research tool in biochemistry, and in particular, its application to medical diagnostics and functional genomics. Since my Royal Society fellowship in the Nicholson group at Imperial College London, where I contributed to some of the first papers in this field, my group has made regular presentations at the major metabolomics meetings and published key papers in this research area. In particular we have examined the use of metabolomics as a tool for monitoring metabolic diseases [Kirschenlohr et al., Nature Medicine, 2006; Roberts et al, Genome Biol. 2011; Roberts et al., Diabetes, 2015, 2017; Hall et al., Hepatology, 2017, Charidemou et al., JCI Insights, 2019; Vacca et al., Nature Metabolism, 2020], epidemiology [Harshfield et al., BMC Biology, 2021; Lotta et al., Nature Genetics, 2021], physiological adaption to high altitude [Horscroft et al., PNAS, 2017] and the use of ketone bodies to improve human sporting performance [Cox et al., Cell Metabolism, 2016]. We have also exploited a range of model organisms to explore aspects of metabolism [Keller et al., Science Advances, 2015, Imanikia et al., Cell Reports, 2019]. Central to the ethos of the group is a mechanistic understanding of why these metabolic changes occur, as exemplified by our recent collaborative work to define the function of a novel enzyme, FAMIN [Cader et al., Cell, 2020]. We have also studied the heterogeneity of disease in tissues using mass spectrometry imaging, including the development of fatty liver and tumour proliferation and death [Hall et al., Cancer Res, 2016; Hall et al., Hepatology, 2017, 2021]. We also develop bioinformatics tools for processing multivariate metabolomics data [Hall et al., Metabolomics, 2018, Liggi et al. Metabolomics, 2018, Ferrazza et al., Bioinformatics, 2017; Haug et al., Nucleic Acid Research, 2013].
Research Areas
Accepting PhDs
I am currently accepting PhDs in Nutrition and Health.
Please get in touch if you would like to discuss your research ideas further.
Research Specialisms
- Biochemistry
- Cardiology
- Diabetes
- Metabolic Biochemistry
- Nutrition
Our research specialisms are based on the Higher Education Classification of Subjects (HECoS) which is HESA open data, published under the Creative Commons Attribution 4.0 International licence.
Current Research
Developing and appliying techniques for high throughput metabolomics and lipidomics to understand chronic human disease.
Mass spectrometry imaging to underdstand how disease arises at the single cell level in terms of metabolism.
Genome scale reconstructions of metabolism.
Population level assessments of nutrition through metabolomics and lipidomics.
We have active projects in non-alcholic fatty liver disease, type 2 diabetes, heart failure and Alzheimer's Disease.
Datasets
-
Transcriptional, epigenetic and metabolic signatures in cardiometabolic syndrome defined by extreme phenotypes
Abstract Background This work is aimed at improving the understanding of cardiometabolic syndrome pathophysiology and its relationship with thrombosis by generating a multi-omic disease signature. Methods/results We combined classic plasma biochemistry and plasma biomarkers with the transcriptional and epigenetic characterisation of cell types involved in thrombosis, obtained from two extreme phenotype groups (morbidly obese and lipodystrophy) and lean individuals to identify the molecular mechanisms at play, highlighting patterns of abnormal activation in innate immune phagocytic cells. Our analyses showed that extreme phenotype groups could be distinguished from lean individuals, and from each other, across all data layers. The characterisation of the same obese group, 6 months after bariatric surgery, revealed the loss of the abnormal activation of innate immune cells previously observed. However, rather than reverting to the gene expression landscape of lean individuals, this occurred via the establishment of novel gene expression landscapes. NETosis and its control mechanisms emerge amongst the pathways that show an improvement after surgical intervention. Conclusions We showed that the morbidly obese and lipodystrophy groups, despite some differences, shared a common cardiometabolic syndrome signature. We also showed that this could be used to discriminate, amongst the normal population, those individuals with a higher likelihood of presenting with the disease, even when not displaying the classic features.- DOI
- 10.6084/m9.figshare.c.5891985.v1
- Publisher
- Figshare
- Links
- Date Made Available
- 22 November 2024
- Contributors
- Seyres, D. (Creator), Cabassi, A. (Creator), Lambourne, J. J. (Creator), Burden, F. (Creator), Farrow, S. (Creator), McKinney, H. (Creator), Batista, J. (Creator), Kempster, C. (Creator), Pietzner, M. (Creator), Slingsby, O. (Creator), Cao, T. H. (Creator), Quinn, P. A. (Creator), Stefanucci, L. (Creator), Sims, M. C. (Creator), Rehnstrom, K. (Creator), Adams, C. L. (Creator), Frary, A. (Creator), Ergüener, B. (Creator), Kreuzhuber, R. (Creator), Mocciaro, G. (Creator), D’Amore, S. (Creator), Koulman, A. (Creator), Grassi, L. (Creator), Griffin, J. L. (Creator), Ng, L. L. (Creator), Park, A. (Creator), Savage, D. B. (Creator), Langenberg, C. (Creator), Bock, C. (Creator), Downes, K. (Creator), Wareham, N. J. (Creator), Allison, M. (Creator), Vacca, M. (Creator), Kirk, P. D. W. (Creator), Frontini, M. (Creator)
-
Data from: Environmental chemicals change extracellular lipidome of mature human white adipocytes
Supplementary information- DOI
- 10.1016/j.chemosphere.2023.140852
- Publisher
- University of Aberdeen
- Links
-
- https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fars.els-cdn.com%2Fcontent%2Fimage%2F1-s2.0-S0045653523031223-mmc1.docx&wdOrigin=BROWSELINK
- https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fars.els-cdn.com%2Fcontent%2Fimage%2F1-s2.0-S0045653523031223-mmc2.xlsx&wdOrigin=BROWSELINK
- Date Made Available
- 01 February 2024
- Related Research Outputs
- Contributors
- Burkhardt, P. (Creator), Palma‐duran, S. A. (Creator), Tuck, A. R. R. (Creator), Norgren, K. (Creator), Norgren, K. (Creator), Nikiforova, V. (Creator), Griffin, J. (Creator), Munic Kos, V. (Creator)
-
Data From Assessment of left ventricular tissue mitochondrial bioenergetics in patients with stable coronary artery disease
- DOI
- 10.1038/s44161-023-00312-z
- Publisher
- University of Aberdeen
- Links
-
- https://static-content.springer.com/esm/art%3A10.1038%2Fs44161-023-00312-z/MediaObjects/44161_2023_312_MOESM1_ESM.pdf
- https://static-content.springer.com/esm/art%3A10.1038%2Fs44161-023-00312-z/MediaObjects/44161_2023_312_MOESM3_ESM.zip
- https://static-content.springer.com/esm/art%3A10.1038%2Fs44161-023-00312-z/MediaObjects/44161_2023_312_MOESM2_ESM.pdf
- Date Made Available
- 07 August 2023
- Related Research Outputs
- Contributors
- Jones, R. (Creator), Gruszczyk, A. V. (Creator), Schmidt, C. (Creator), Hammersley, D. J. (Creator), Mach, L. (Creator), Lee, M. (Creator), Wong, J. (Creator), Yang, A. (Creator), Hatipoglu, S. (Creator), Lota, A. S. (Creator), Barnett, S. (Creator), Toscano-Rivalta, R. (Creator), Owen, R. (Creator), Raja, S. (Creator), De Robertis, F. (Creator), Smail, H. (Creator), D'Souza, W. A. (Creator), Stock, U. (Creator), Kellman, P. (Creator), Griffin, J. (Creator), Dumas, M. E. (Creator), Martin, J. (Creator), Saeb-Parsy, K. (Creator), Vazir, A. (Creator), Cleland, J. G. (Creator), Pennell, D. J. (Creator), Bhudia, S. (Creator), Halliday, B. P. (Creator), Noseda, M. (Creator), Frezza, C. (Creator), Murphy, M. P. (Creator), Prasad, S. K. (Creator)
-
Data from Mapping the human genetic architecture of COVID-19
COVID-19 Host Genetics Initiative- DOI
- 10.1038/s41586-021-03767-x
- Publisher
- University of Aberdeen
- Links
-
- https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03767-x/MediaObjects/41586_2021_3767_MOESM1_ESM.pdf
- https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03767-x/MediaObjects/41586_2021_3767_MOESM2_ESM.pdf
- https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03767-x/MediaObjects/41586_2021_3767_MOESM4_ESM.pdf
- https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03767-x/MediaObjects/41586_2021_3767_MOESM6_ESM.xlsx
- Date Made Available
- 08 July 2021
- Related Research Outputs
- Contributors
- Griffin, J. (Creator)
- Publications
-
Page 5 of 5 Results 41 to 46 of 46
KniMet: a pipeline for the processing of chromatography-mass spectrometry metabolomics data
Metabolomics, vol. 14, no. 4, 52Contributions to Journals: ArticlesMetabolomics and Lipidomics Study of Mouse Models of Type 1 Diabetes Highlights Divergent Metabolism in Purine and Tryptophan Metabolism Prior to Disease Onset
Journal of Proteome Research, vol. 17, no. 3, pp. 946-960Contributions to Journals: Articles- [ONLINE] DOI: https://doi.org/10.1021/acs.jproteome.7b00489
Alphavirus-induced hyperactivation of PI3K/AKT directs pro-viral metabolic changes
PLoS Pathogens, vol. 14, no. 1, e1006835Contributions to Journals: ArticlesLipidomics Profiling of Human Adipose Tissue Identifies a Pattern of Lipids Associated with Fish Oil Supplementation
Journal of Proteome Research, vol. 16, no. 9, pp. 3168-3179Contributions to Journals: Articles- [ONLINE] DOI: https://doi.org/10.1021/acs.jproteome.7b00161
Alterations in endo-lysosomal function induce similar hepatic lipid profiles in rodent models of drug-induced phospholipidosis and Sandhoff disease
Journal of Lipid Research, vol. 58, no. 7, pp. 1306-1314Contributions to Journals: Articles- [ONLINE] DOI: https://doi.org/10.1194/jlr.M073395
Integration of Metabolomics and Expression of Glycerol-3-phosphate Acyltransferase (GPAM) in Breast Cancer─Link to Patient Survival, Hormone Receptor Status, and Metabolic Profiling
Journal of Proteome Research, vol. 11, no. 2, pp. 850-860Contributions to Journals: Articles- [ONLINE] DOI: https://doi.org/10.1021/acs.jproteome.2c00181