Professor Peter McCaffery

In this section
Professor Peter McCaffery
Professor Peter McCaffery
Professor Peter McCaffery

Personal Chair

Accepting PhDs

About
Email Address
peter.mccaffery@abdn.ac.uk
Telephone Number
+44 (0)1224 437362
Office Address

Institute of Medical Sciences
Room 4:33 
Foresterhill
Aberdeen AB25 2ZD

School/Department
School of Medicine, Medical Sciences and Nutrition

Biography

I graduated in Biochemistry at Victoria University, New Zealand and obtained a Ph.D. in Pathology at Otago University, New Zealand in 1987. After post-doctoral research at Harvard Medical School I became Instructor and then Assistant Professor in the Department of Psychiatry, Harvard Medical School, where I first developed my interest in retinoic acid in the developing central nervous system. After working at the University of Massachusetts Medical School, Worcester, MA as Associate Professor in Cell Biology, I moved to the University of Aberdeen in 2006.  There I was co-director of the Institute of Medical Sciences until 2015.  My research into retinoic acid continues with a focus on its function in the hypothalamus as well as its potential to protect in neuropsychiatric and neurodegenerative disorders, the latter including Alzheimer’s and motor neuron disease.  My publications can be viewed on google scholar with an h-index of 53.

Research

Research Overview

CNS Vitamin A Research Laboratory

We all grow up with the idea that vitamins are good for us and we will become very sick if deficient. Very little is known though about the need of vitamin A for the brain. Our laboratory has demonstrated that vitamin A is essential for the brain and necessary for some of its primary functions and how it controls the rest of the body. This research uses in-vitro cell lines, studies the brains of mice and rats as well as translating this research to humans.  Working in the laboratory (but sometime in the evening enjoying an Indian meal) are, from left to right Azita Kouchmeshky (PhD student), Peter McCaffery (PI), Cristina Lagido (former Technician), Elizabeth Hay (former honours student now Resarch Fellow at the Univ. Aberdeen), Reem Bu Saeed (former PhD student now Assistant Professor KSAU-National Guard, Jeddah, Kingdom of Saudi Arabia), Thabat Khatib (former PhD student now Resarch Fellow at Hebrew Univ. Jerusalem) and, thanks to the magic of photoshop, Jason Clark (PhD student) while a future neuroscientist is in the foreground (Reem's daughter, Rafeef). 

 

To HEAR some our research go to Naked Scientist "Science in Scotland" podcast.  

To READ some more of our views on nutrients and vitamins head to "The Conversation".

To VIEW AN ANIMATION of how retinoic works click here for a movie (or here for an annotated version, courtesy C. McCaffery)

To YOUTUBE view a clip of one of our projects head here

To view the COMPANY that arose from this work and led by Andy Whiting go to "Nevrargenics Ltd"

 

What is vitamin A and what does it do?

Vitamins are compounds in food that, in just small amounts, are required for growth and maintaining good health.  Vitamin A is a lipid, often in the chemical form retinol, required for the function of the brain, as well as many other organs.  It can be converted to an acidic form called retinoic acid which controls gene expression (see below). For many of Vitamin A’s functions its conversion to retinoic acid is essential.   Cells that require retinoic acid capture vitamin A from the circulation and contain the enzymes that convert it to retinoic acid.

Retinoic acid synthesis and its activation of gene expression

Synthesis from beta-carotene, retinyl ester or retinol of retinoic acid (left) and it activation via retinoic acid receptors of gene expression (right).

We have found that retinoic acid is synthesized in the brain where it has numerous functions, for instance in the hippocampus (controlling birth of new neurons), hypothalamus (mediating seasonal changes in body weight) and pineal gland (regulating day/night changes).  We are now using our knowledge of the action of retinoic acid in the brain to protect neurons from dying to develop retinoic acid like compounds that will be therapeutic for motor neurons diseases, with an emphasis on amyotrophic lateral sclerosis (ALS), in which motor neurons die, as well as Alzheimer's disease.

Research Areas

Accepting PhDs

I am currently accepting PhDs in Biomedical Sciences.


Please get in touch if you would like to discuss your research ideas further.

Email Me

Biomedical Sciences

Supervising
Accepting PhDs

Research Specialisms

  • Pathobiology
  • Neuroscience
  • Molecular Biology
  • Cell Biology
  • Metabolic Biochemistry

Our research specialisms are based on the Higher Education Classification of Subjects (HECoS) which is HESA open data, published under the Creative Commons Attribution 4.0 International licence.

Current Research

(1) Therapeutic roles of novel RAR ligands (RAR-Ms) for treatment of amyotrophic lateral sclerosis (Azita Kouchmeshky)

Amyotrophic lateral sclerosis (ALS) is a heterogenous progressive motor neuron degenerative disorder for which the exact pathogenesis and effective treatment are lacking.  The retinoic acid signalling pathway plays crucial roles in the central nervous system to promote cell survival.  We have shown, for instance, that motor neurons express the enzymes that synthesize retinoic acid from vitamin A. It is unexplored however whether it may protect motor neurons in ALS. Thus, the neuroprotective effect on ALS of novel retinoic acid receptor (RAR) ligands, called RAR-Ms, are being investigated.  The neuroprotective effect of RAR-Ms is investigated using a series of novel methods that study (i) glutamate-induced excitotoxicity  in rat primary cortical neurons, (ii) RNA foci, TDP-43 dislocation, and survival rates motor neuron like cell line NSC-34 stably transfected with C9ORF72 expanded repeat and (iii) assembly and disassembly of stress granules (SGs) in NSC-34 cells transiently transfected with (GFP)-SOD1G93A.  Further, we have set up a novel assay to determine how RAR-Ms are distributed after injection into mice.  To date we have shown that the lead RAR-M compound, DC645, showed a neuroprotective effect in the excitotoxicity assay, significantly increasing the number of cortical neurons following glutamate treatment and also increased the survival rate of the NSC-34 cells expressing C9orf72 gene. Furthermore, DC645 affects the assembly of SGs in the NSC-34 cells expressing (GFP)-SOD1G93A. Determination of in-vivo distribution of DC645 in the mouse following IP injection showed  high levels of accumulation in the spinal cord, as would be needed for ALS treatment. Further investigation of the RAR-Ms continue as a potential ALS therapeutic.

The RAR-M DC645 reduces stress granule numbers in oxidative stress induced NSC-34 motor neuron like cells.

 

(2) Application of artificial intelligence-driven design of function-directed ligands for selective retinoic acid receptor binding (Jason Clark)

The retinoic acid receptor (RAR) class of nuclear receptor have great future potential for the treatment of neurodegenerative diseases.  However the shape and structure of RAR ligands that optimally activate RARs is poorly understood.  This project, a collaboration between University of Aberdeen, Durham University and University College London, aims to model RARs to design novel ligands that activate the receptors and understand the triggering routes for RARs for both genomic and non-genomic signalling.  A radically different approach is taken to ligand design, to modelling and to understanding binding selectivities to the different RARs. Used is a combination of molecular docking, atomistic molecular dynamics simulations and machine learning techniques, to move beyond static 2D or 3D ligand descriptors and develop complex Quantitative Structure–Activity Relationship (QSAR) models which incorporate dynamics alongside shape and chemical selectivity.  Further, the techniques employed include an AI approach to ligand design including the use of domain-specific technologies such as DeepChem and more generic tools such as Keras and TensorFlow. From the chemical and biological side, synthetic retinoids predicted from the above work are prepared and applied in a variety of assays for RAR activity such as transcriptional activity, as well as non-genomic signalling via a variety of kinases and control of protein translation using cell lines and primary neural cells.

 

An Algorithm-determined conformational clustering histogram (left) summarising the distribution of the conformations of retinoic acid that  were observed docking with RARgamma at a 1.2 Å RMSD threshold (left). Overlaid comparison of original bound ligand state (orange) with key conformers selected by highest frequency (A) and top ranking by ChemScore (B).

 

(3) Development of multi-dimensional approaches to understand how retinoic acid receptors control neuronal behaviour (Peter McCaffery)

We have a unique approach to study retinoic acid receptor (RAR) ligands, highlighting their multi-dimensional action as regulators of transcription (genomic action) and modulators of rapid pathways in the cytoplasm (non-genomic actions).  We studied new RAR ligands called RAR-modulators developed by Nevrargenics Ltd. These ligands have a diverse range of actions on genomic/non-genomic pathways and varied capacity to induce major morphological change in neurons.  This company developed these RAR ligands for treatment of neurodegenerative disease (NGD), with a current focus on amyotrophic lateral sclerosis.  The multi-modal analysis we have taken has already identified a lead compound and the proposed project will expand the approach to help identify optimised RAR-modulators for varied NGDs.

 

3D analysis of 10 nM RAR-M action on SH-SY5Y cells plotting genomic (transcriptional), non-genomic (ERK activity) and neurite outgrowth on the 3 axes.  High genomic/non-genomic activity is necessary for high neurite activity (Group A)  but a second group with these activities (Group B) almost totally lack neurite outgrowth-inducing activity.

 

(4) How vitamin A homeostasis may be controlled by the hypothalamus  (Peter Imoesi)

Vitamin A (retinol) occurs in animals as esters of higher fatty acid which is an essential constitute of mammalian diet. Basically vitamin A is derived from carotenoids which are plant pigments or the liver of animals. Essentially dietary retinol is transported in circulation and bound to retinol binding protein (RBP). Subsequently, with the aid of RBP receptor stra6, cells are able to recruit and transport retinol to the cytosol. In the cytosol retinol is bound to cellular retinol binding protein (CRBP) and through various enzymatic processes retinol is converted to retinoic acid in the nucleus to initiate gene transcription. Retinol is maintained at a precise concentration of 1µM in plasma despite the slight increase of dietary intake. However, how the body is able to maintain this concentration is relatively unknown. Previous research as implicate the hypothalamus as the central control of body homeostasis for instance glucose. My research is to determine how vitamin A (retinol) homeostasis is controlled by the hypothalamus. To investigate this, rats will be injected with retinoic acid (RA) the active metabolite of retinol to the hypothalamus using a stereotactic procedure and subsequently systemic increase or decrease of RA will be measured over time.

Tanycytes lining the wall of the third ventricle (3V) of the hypothalamus may be a key cell in the control of vitamin A homeostasis

Collaborations

Bill Blaner (Columbia University)

Siddharthan Chandran (University of Aberdeen)

Dave Chisholm (Nevrargenics)

Iain Greig (University of Aberdeen)

Bhuvaneish Selvaraj (University of Edinburgh)

Andy Whiting (Durham Univerity)

 

Supervision

My current supervision areas are: Biomedical Sciences.

We have been very fortunate to have had a series of excellent students, undergraduate and postgraduate, as well as post-doctoral fellows, who have greatly contributed to our research.  Many stay in contact and we have been tremendous to see their careers advance in research, teaching, communication, industry and varied others, as you will see below.

Summer Students

Miss Jessica Fattal

Last degree

Bachelors of Science (Neuroscience and Psychology)

Current position

Research Assistant at Michigan State Univ.

Email address

fattalj1@msu.edu

Research interest

Investigating the physiological mechanisms underlying various forms of mental illness

Miss Francesca Moramarco

Last degree

MSci student

in Neuroscience with Psychology with Industrial Placement

Current position

MSci Student, University of Aberdeen

Email address

francesca.moramarco.17@abdn.ac.uk

Research interest

Translational neuroscience and Neurobiology

Ms. Danny Schnitzler

Last degree

MSci Biomedical Science (Physiology)

Current position

PhD student, University of Edinburgh

Email address

dschnitzler@outlook.com

Research interest

Neuroendocrinology

sex hormones; prenatal programming

Dr. Karen Jane Thompson

Last degree

PhD in Neuroscience, University of Aberdeen

Current position

Associate Medical Writer, CMC Connect

Research interest

Wide ranging, from retinoic acid in the pituitary gland, glutamate receptor and other channels, in mechanosensory nerve terminals, muscarinic acetylcholine receptors in Alzheimer's disease, and the potential of the endocannabinoid system in neurodegenerative diseases.

Mr Timothy Nehila

Last degree

B.A. in Biology from Case Western Reserve University

Current position

Post-Baccalaureate Researcher in the lab of Dr. Agbor-Enoh at the National Institutes of Health

Email address

ten13@case.edu

Research interest

transplantation genomics 

Dr. Marta U. Wołoszynowska-Fraser

Last degree

PhD in translational neuroscience - University of Aberdeen

Current position

Postdoctoral Visiting Fellow at the National Institute on Aging (Baltimore, USA)

Email address

marta.urszula.woloszynowska.07@aberdeen.ac.uk

Research interest

My current research interest includes retinoic acid signalling system differences in the hippocampus of aged animals with and without memory impairment

 

Masters Students

Mr Shakil Khan

Last degree

MRes Drug Discovery

 

Current position

PhD student at Aston University

Email address

khans69@aston.ac.uk

Research interest

Role of ion channels in disease states

Mr. Sudheer Nunna

Last degree

Master of Research (MRes)

Current position

Analytical Scientist, Lonza Biologics Pte. Ltd (Singapore)

Email address

sudheernunna@gmail.com

Research interest

Proteomics

Ms. Sylwia Matz

Last degree

MSc Drug Discovery and Development

Current position

Global Clinical Trial Manager

Email address

s.matz.12@aberdeen.ac.uk

Research interest

Project Management, Clinical Research, Oncology

Grace Okpara Chidimma

Last degree

MSc Clinical Pharmacology

Doctor of Veterinary Medicine (DVM)

Current position

CEO Ultra Salem Sphare

Veterinary Services and Consultancy. Kaduna Nigeria

Email address

gracygracious.gg@gmail.com

Research interest

Pharmacogology

Animal health and Production.

Mr Obuchinezia Anyanwu

Last degree

MSc Drug Discovery and Development

Current position

Junior Medical Writer at Aparito

Email address

obuchinezia@aparito.com

obinezia@outlook.com

Research interest

neuromuscular diseases

Veronika Lavickova

Last degree

MSc Molecular Medicine

Current position

Lab Project Set-up Coordinator

Email address

v.lavickova.14@aberdeen.ac.uk

Research interest

Clinical Research

 

PhD Students 

Dr. Reem Bakr Busaeed

Last degree

PhD

 

Current position

Assistant Professor in Anatomy, College of Medicine, Jeddah

Email address

Saeedr@ksau-hs.edu.sa

saeedrb@ngha.med.sa

Research interest

Bidirectional interaction between endocannabinoid and retinoid signalling pathways in the brain, plus Anatomy and clinical work

Dr Sonia Elena Nanescu

Last degree

PhD

 

Current position

Scientific review specialist (contractor) at NCCIH( National Center for Complementary and Integrative Health) /NIH (National Institute for Health)

Email address

Sonia.nanescu.sn@gmail.com

Research interest

Neuronal repair and regeneration, remyelination, vitamin A

Dr Peter Ikhianosimhe Imoesi

Last degree

PhD

 

Current position

Research Fellow, University of Aberdeen

Email address

peter.imoesi@abdn.ac.uk

Research interest

The role of neural connection and debilitating diseases, learning and memory, neurodegenerative diseases, homeostasis of biomolecules e.g. retinoids and obesity.

Dr Jemma Ransom

Last degree

PGCE (Chemistry) University of Leeds

 

Current position

Company Director, Little Learners Durham & Darlington

Email address

jemma@littlelearnersuk.com

Research interest

I left science at the end of my PhD and I now run an educational company in Darlington specialising in promoting literacy amongst the under 5's. I'm a mum of a 1 year old and a 4 year old so I guess my primary research interest at present is keeping the peace!

Dr Anna Ashton

Last degree

PhD

 

Current position

Post-doctoral Researcher, University of Oxford

Email address

anna.ashton@ndcn.ox.ac.uk

Research interest

Molecular mechanisms underlying the circadian clock

Dr Thabat Khatib

Last degree

PhD in Translational Neuroscience

 

Current position

Postdoctoral Research Fellow at the Hebrew University of Jerusalem

Email address

thabatkhatib@gmail.com

Research interest

Neurodegenerative Diseases, Neuroplasticity, Retinoic Acid, Evolutionary Genetics & Epigenetics, Stem Cells, Drug Discovery & Translational Neuroscience.

Mrs Victoria Gorberg

Last degree

BSc in Molecular Biology

 

Current position

PhD student

Email address

v.gorberg.17@abdn.ac.uk

Research interest

Tourette syndrome, Cannabinoids.

Ms Azita Kouchmeshky

Last degree

MSc (Neuropharmacology)

Pharm D. (Doctor of Pharmacy)

 

Current position

PhD student Translational Neurosciences

Email address

a.kouchmeshky@abdn.ac.uk

Research interest

Disturbance in normal neuroprotective regulatory signalling pathways in the CNS associated with pathophysiology of neurodegenerative diseases

Dr Timothy Goodman

Last degree

PhD in Neuroscience (University of Aberdeen)

 

Current position

Senior Laboratory Research Scientist, The Francis Crick Institute

Email address

timothy.goodman@crick.ac.uk

Research interest

Neuronal circuits underlying multisensory integration in the superior colliculus

 

Research Fellows

Dr. Kirst Shearer

Last degree

PhD

Current position

NRS Cancer Research Network - North & East Manager

Email address

kirstyshearer@nhs.net

Research interest

Retinoic acid and adult hippocampal and hypothalamic function

Dr. Patrick Stoney

Last degree

PhD

Medical Sciences, University of Aberdeen

Current position

Staff Scientist, Yamamoto Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, Japan

Email address

p.n.stoney@gmail.com

Research interest

I am currently working on the regulation of mRNA stability by the CCR4-NOT deadenylase complex

Funding and Grants

Wellcome, BBSRC, Tenovus, Autism Speaks, The Royal Society and The Royal Society of Edinburgh

Teaching

Teaching Responsibilities

I have a Postgraduate Certificate in Higher Education Learning & Teaching and am a Fellow of the Higher Education Academy.  Presently I am an external examiner for the School of Biology, University of St Andrews 

I teach in various courses in Aberdeen including:
BScMedSci SSCII and SSCI
SM2501 Research Skills for Medical Sciences
SM2001 Foundation Skills for Medical Sciences
BI25M7 Energy for life labs
BT5007 Industrial Placement.
BM4004 Advanced Molecules. Membranes and Cells lectures and practicals
BM4010 Stem Cells and Regeneration
BC4014 Biochemistry Option 1
MT5024 Mol Pharmacol 

Publications

Page 10 of 10 Results 91 to 91 of 91

  • Retinoids in embryonal development

    Ross, S. A., McCaffery, P. J., Drager, U. C., De Luca, L. M.
    Physiological Reviews, vol. 80, no. 3, pp. 1021-1054
    Contributions to Journals: Articles
Show 10 | 25 | 50 | 100 results per page

Refine

Chapters in Books, Reports and Conference Proceedings

Contributions to Journals

Contributions to Specialist Publications

Patents