The Inform Prize
The Inform Prize is an annual competition where students design apps that help overcome a real-world problem before presenting it to a group of industry figures.
This degree brings together two very closely linked subjects and offers a tremendous degree programme to those with a strong interest in both.
This programme follows a number of the core Computing Science courses undertaken as part of the straight BSc Computing Science degree and introduces key Physics components throughout all four years, in the form of a range of core and optional Physics courses. These include: Calculus, Optics and Electronics, Relativity and Quantum Mechanics, The Solid State, Nuclear and Semiconductor Physics and Modelling Theory.
The final year project is a joint computing and physics project.
This course, which is prescribed for level 1 undergraduate students (and articulating students who are in their first year at the University), is studied entirely online, takes approximately 5-6 hours to complete and can be taken in one sitting, or spread across a number of weeks.
Topics include orientation overview, equality and diversity, health, safety and cyber security and how to make the most of your time at university in relation to careers and employability.
Successful completion of this course will be recorded on your Enhanced Transcript as ‘Achieved’.
15 Credit Points
This course will be delivered in two halves. The first half will provide a self-contained introduction to computer programming. It will be accessible to all undergraduates. Students will be exposed to the basic principles of computer programming, e.g. fundamental programming techniques, concepts, algorithms and data structures. The course contains lectures where the principles are systematically developed. As the course does not presuppose knowledge of these principles, we start from basic intuitions. The second half will be particularly of use to those studying Science and Engineering subjects, broadly interpreted, as well as Computing and IT specialists. It will include a gentle introduction to professional issues and security concepts.
15 Credit Points
Physics is the most fundamental of the sciences, and if we wish to better understand the nature and behaviour of the Universe, it is perhaps the best place to start. This course introduces the basic topics of Physics, from the sub-microscopic scale of electrons and atoms, to the orbits of the planets and stars, to the celestial mechanics of galaxies. It encompasses the work of Physicists like Isaac Newton, Albert Einstein, Marie Curie and Jocelyn Bell Burnell. If you’ve ever been curious about how the world works, you will hopefully find this course, typically well-regarded by students, interesting.
15 Credit Points
Calculus is the mathematical study of change, and is used in many areas of mathematics, science, and the commercial world. This course covers differentiation, limits, finding maximum and minimum values, and continuity. There may well be some overlap with school mathematics, but the course is brisk and will go a long way quickly.
15 Credit Points
This course introduces the concepts of complex numbers, matrices and other basic notions of linear algebra over the real and complex numbers. This provides the necessary mathematical background for further study in mathematics, physics, computing science, chemistry and engineering.
15 Credit Points
Students will learn to develop modern web applications using a variety of languages and frameworks as part of their degree, and prepare them for whatever they do after graduation. A key focus will be on the integration of HTML with CSS and Javascript with other backing frameworks to develop dynamic applications. The course is open to all undergraduates, and is accessible to those with no previous experience.
15 Credit Points
This course will build on the basic programming skills acquired in the first half-session and equip the students with advanced object oriented programming knowledge, implementation of data structure and algorithms, and basic software engineering techniques. The students will be challenged with more complicated programming problems through a series of continuous assessments.
15 Credit Points
Understanding electric and magnetic forces is of paramount importance for understanding the physical world. They are eventually responsible for the matter around us to self-organize (in solid, liquid and gas phases), with given structures, density, elastic properties, and so on. Furthermore, they are responsible for light emission and propagation across the space.
Already the first rudiments of electricity and magnetism will help to appreciate that they are two difference faces of the same coin: electromagnetism. This relationship is the first evidence of the possibility to build a unified description of the microscopic laws of the physical universe.
15 Credit Points
The aim of the course is to provide an introduction to Integral Calculus and the theory of sequences and series, to discuss their applications to the theory of functions, and to give an introduction to the theory of functions of several variables.
This provides the necessary mathematical background for further study in mathematics, physics, computing science, chemistry and engineering.
15 Credit Points
This course is concerned with tools and techniques for scalable and dependable software programming. It focusses primarily on the Java programming language and related technologies. The course gives extensive programming practice in Java. It covers in depth features of the language and how best to use them, the execution model of the language, memory management, design principles underpinning the language, and comparisons with other languages. Tools for collaboration, productivity, and versioning will also be discussed.
15 Credit Points
Databases are an important part of traditional information systems (offline /online) as well as modern data science pipelines. This course will be of interest to anyone who wishes to learn to design and query databases using major database technologies. The course aims to teach the material using case studies from real-world applications, both in lectures and lab classes.
In addition, the course covers topics including management of different kinds of data such as spatial data and data warehousing. The course provides more hands-on training that develops skills useful in practice.
15 Credit Points
Understanding oscillatory and wavelike behaviour is of huge importance in comprehending how our natural world works. It seems that everything in nature has its own cycle, rhythm or oscillation. From planets revolving around the sun to waves on the sea, even fundamental particles are treated as waves in modern physics. Accessible to students with some knowledge of calculus, this course will explain the mathematics of this fascinating and important subject. Methods of solving the differential equations that describe waves and oscillatory phenomena will be explored, including numerical techniques.
15 Credit Points
This course provides the knowledge needed to understand, design and compare algorithms. By the end of the course, a student should be able to create or adapt algorithms to solve problems, determine an algorithm's efficiency, and be able to implement it. The course also introduces the student to a variety of widely used algorithms and algorithm creation techniques, applicable to a range of domains. The course will introduce students to concepts such as pseudo-code and computational complexity, and make use of proof techniques. The practical component of the course will build on and enhance students' programming skills.
15 Credit Points
This 100% continuously assessed course explores two fundamental areas of physics. In electronics you will go from building simple circuits to designing complex logical architectures, using both real components and simulation software.
The optics half of the course explores various fascinating optical phenomena, some of which are practically applicable for geologists and many other scientific disciplines. The practicals elegantly demonstrate the fundamental properties of light.
15 Credit Points
In the 20th Century, Physics got strange, and this course sets out to explore the foundations of this modern approach. In Special Relativity we will look at the idea that time is not an absolute – that events can happen in different times for different observers – and explore the effects of travelling at close to the speed of light. The quantum mechanics section introduces some of the most exciting and dramatically successful science of all time, and discuss the evolution of this idea from the days of Schrodinger’s cat to quantum tunnelling.
15 Credit Points
For most of us, our perceptions are governed most strongly by our vision. We see because of light, but what is light? It’s been considered a particle, a wave, and in modern physics is somehow both. This course explores the fascinating physics of this phenomenon, at an elementary mathematical level suitable for non-science students. We’ll cover petrological microscopy, of interest to geologists, interference and diffraction, how colour works, see how polarisation can be applied in both scientific fields and every day life, and see how the photon can be used in devices in the increasing prevalent field known as photonics.
15 Credit Points
This course looks at why a computer system that interacts with human beings needs to be usable. It covers a set of techniques that allow usability to be taken into account when a system is designed and implemented, and also a set of techniques to assess whether usability has been achieved. Weekly practical sessions allow students to practice these techniques. The assessed coursework (which is normally carried out by groups of students) gives an opportunity to go through the design process for a concrete computer system, with a particular focus on ensuring usability.
15 Credit Points
Students will develop large commercial and industrial software systems as a team-based effort that puts technical quality at centre stage. The module will focus on the early stage of software development, encompassing team building, requirements specification, architectural and detailed design, and software construction. Group work (where each team of students will develop a system selected using a business planning exercise) will guide the software engineering learning process. Teams will be encouraged to have an active, agile approach to problem solving through the guided study, evaluation and integration of practically relevant software engineering concepts, methods, and tools.
15 Credit Points
Our world is made of three types of matter, Solids, Liquids and Gases. The first part of this course will explore the physical properties of these forms of matter and investigate important technological phenomena such as the flow of liquids and the causes of catastrophic failure in mechanical components. In the second half of the course, the nature of heat energy in matter will be explored. Thermodynamic behaviour will be understood in terms of Entropy and the operation of engines and their theoretical efficiency limitations will be explained.
15 Credit Points
This course introduces key mathematical methods required in more advanced physics courses. The mathematical methods introduced in this course will be key to understand courses such as Electricity and Magnetism, Quantum Mechanics and Statistical Physics. The importance of the mathematical and computational methods discussed in this course goes beyond being useful for other physics courses, as they will provide you with key analytical tools to approach a large variety of problems, also relevant for your career after University.
15 Credit Points
In this module, which is the follow-up of CS3028, students will focus on the team-based development of a previously specified, designed, and concept-proofed software system. Each team will build their product to industrial-strength quality standards following an agile process and applying the software engineering concepts, methods, and tools introduced in CS3028. The course includes a series of mandatory participatory seminars on professional and management issues in IT and IT projects. Students will be expected to relate their engineering work to these issues.
15 Credit Points
This course discusses core concepts of distributed systems, such as programming with distributed objects, multiple threads of control, multi-tire client-server systems, transactions and concurrency control, distributed transactions and commit protocols, and fault-tolerant systems. The course also discusses aspects of security, such as cryptography, authentication, digital signatures and certificates, SSL etc. Weekly practical sessions cover a set of techniques for the implementation of distributed system concepts such as programming with remote object invocation, thread management and socket communication.
15 Credit Points
Theories of the physical world around us must be consistent with nature. This can be checked by experiment and indeed unexpected experimental results can lead to the development of new theories. This course offers the opportunity to test theories in optics, electromagnetism, thermodynamics and materials science by experiment. You will learn how to carry out experiments, analyse your data and present your results both in writing and verbally. You will get the opportunity to work with Michelson interferometers, sensors, instrumentation and computers. This course supports your physics lectures and prepares you for an experimental scientists work after university.
15 Credit Points
The course is based on modern views on the structure of solids, how that structure is determined by X-ray crystallography and the basics of structure-property relationships. This involves learning the language of the basic shapes and symmetry displayed by crystals, then using that within the interdisciplinary subject of X-ray crystallography, source of many Nobel prizes and great advance in Physics, Chemistry, Materials Science, Biology and Medicine. The course then briefly examines some key topics including semiconductors, defects and amorphous materials.
Select one of the following:
Plus select one of the following:
*These courses alternate on a two-year cycle. PX 4510 will run in 2023-24.
15 Credit Points
This course discusses core concepts and architectures of operating systems, in particular the management of processes, memory and storage structures. Students will learn about the scheduling and operation of processes and threads, problems of concurrency and means to avoid race conditions and deadlock situations. The course will discuss virtual memory management, file systems and issues of security and recovery. In weekly practical session, students will gain a deeper understanding of operating system concepts with various programming exercises.
15 Credit Points
The course provides an introduction to Artificial Intelligence (AI). It discusses fundamental problems of AI and their computational solution via key concepts.
A graduating curriculum for the Honours programme must include 90 credit points from Level 4 courses.
15 Credit Points
In this course, you will conduct an individual research project into the behaviour of a computing system. You will develop knowledge and understanding of rigorous methods to: explore computing system behaviour; identify questions about behaviour; design experiments to answer those questions; analyse experimental results; and report on the outcomes of your research. You will develop your understanding of research ethics and how this relates to professional behaviour.
15 Credit Points
Whatever career you end up in, group working skills will be critical, and this course is designed to develop them. It is 100% continuously assessed and consists of some initial teamwork training, followed by two very different projects. One explores PET scanning and is taught by Professor Andy Welch, who is in charge of the medical imaging unit at Foresterhill. The other is about fibre optics communications and is taught by Dr. Ross Macpherson. These open-ended projects will give you some less prescriptive assessment in your final year.
15 Credit Points
Statistical physics derives the phenomenological laws of thermodynamics from the probabilistic treatment of the underlying microscopic system. Statistical physics, together with quantum mechanics and the theory of relativity, is a cornerstone in our modern understanding of the physical world.
Through this course, you will gain a better understanding of fundamental physical concepts such as entropy and thermodynamic irreversibility, and you will learn how derive some simple thermodynamic properties of gases and solids.
The final part of the course is devoted to an introduction to stochastic systems, which are widely used in many different fields such as physics, biology and economics.
45 Credit Points
This course consists of a supervised individual project; it provides students the experience of investigating a real problem in the intersection of computing science and physics, exploring solutions and technologies.
15 Credit Points
This course was designed to show you what you can do with everything you learnt in your degree. We will use mathematical techniques to describe a fast variety of “real-world” systems: spreading of infectious diseases, onset of war, opinion formation, social systems, reliability of a space craft, patterns on the fur of animals (morphogenesis), formation of galaxies, traffic jams and others. This course will boost your employability and it will be exciting to see how everything you learnt comes together.
15 Credit Points
This course provides an introduction to machine learning and data mining. Students will learn how to analyse complex datasets by applying data pre-processing, exploration, clustering and classification, time-series analysis, neural networks, and many other techniques. This course is particularly suitable for those who are interested in working as data analysts or data scientists in the future.
A graduating curriculum for the Honours programme must include 90 credit points from Level 4 courses.
We will endeavour to make all course options available. However, these may be subject to change - see our Student Terms and Conditions page.
Students are assessed by any combination of three assessment methods:
The exact mix of these methods differs between subject areas, year of study and individual courses.
Honours projects are typically assessed on the basis of a written dissertation.
The University of Aberdeen is delighted to offer eligible self-funded international on-campus undergraduate students a £6,000 scholarship for every year of their programme.
View the Aberdeen Global ScholarshipThe information below is provided as a guide only and does not guarantee entry to the University of Aberdeen.
SQA Highers
Standard: AABB*
Applicants who have achieved AABB (or better), are encouraged to apply and will be considered. Good performance in additional Highers/ Advanced Highers may be required.
Minimum: BBB*
Applicants who have achieved BBB (or are on course to achieve this by the end of S5) are encouraged to apply and will be considered. Good performance in additional Highers/Advanced Highers will normally be required.
Adjusted: BB*
Applicants who have achieved BB, and who meet one of the widening access criteria are are guaranteed a conditional offer. Good performance in additional Highers/Advanced Highers will be required.
* Including good performance in Mathematics and Physics by the end of your senior phase of education.
More information on our definition of Standard, Minimum and Adjusted entry qualifications.
A LEVELS
Standard: BBB*
Minimum: BBC*
Adjusted: CCC*
* Including good performance in Mathematics and Physics by the end of your senior phase of education.
More information on our definition of Standard, Minimum and Adjusted entry qualifications.
International Baccalaureate
32 points, including 5, 5, 5 at HL, including HL in Mathematics and Physics.
Irish Leaving Certificate
5H with 3 at H2 AND 2 at H3, Including H3 in Mathematics and Physics.
SQA Highers
Standard: BBBB*
Applicants who have achieved BBBB (or better), are encouraged to apply and will be considered. Good performance in additional Highers/ Advanced Highers may be required.
Minimum: BBC
Applicants who have achieved BBC at Higher and meet one of the widening participation criteria above are encouraged to apply and are guaranteed an unconditional offer for MA, BSc and BEng degrees.
Adjusted: BB
Applicants who have achieved BB at Higher, and who meet one of the widening participation criteria above are encouraged to apply and are guaranteed an adjusted conditional offer for MA, BSc and BEng degrees.
We would expect to issue a conditional offer asking for one additional C grade at Higher.
Foundation Apprenticeship: One FA is equivalent to a Higher at A. It cannot replace any required subjects.
* Including good performance in Mathematics and Physics by the end of your senior phase of education.
More information on our definition of Standard, Minimum and Adjusted entry qualifications.
A LEVELS
Standard: BBC*
Minimum: BCC*
Adjusted: CCC*
* Including good performance in Mathematics and Physics by the end of your senior phase of education.
More information on our definition of Standard, Minimum and Adjusted entry qualifications.
International Baccalaureate
32 points, including 5, 5, 5 at HL, including HL in Mathematics and Physics.
Irish Leaving Certificate
5H with 3 at H2 AND 2 at H3, Including H3 in Mathematics and Physics.
The information displayed in this section shows a shortened summary of our entry requirements. For more information, or for full entry requirements for Sciences degrees, see our detailed entry requirements section.
To study for an Undergraduate degree at the University of Aberdeen it is essential that you can speak, understand, read, and write English fluently. The minimum requirements for this degree are as follows:
IELTS Academic:
OVERALL - 6.0 with: Listening - 5.5; Reading - 5.5; Speaking - 5.5; Writing - 6.0
TOEFL iBT:
OVERALL - 78 with: Listening - 17; Reading - 18; Speaking - 20; Writing - 21
PTE Academic:
OVERALL - 59 with: Listening - 59; Reading - 59; Speaking - 59; Writing - 59
Cambridge English B2 First, C1 Advanced or C2 Proficiency:
OVERALL - 169 with: Listening - 162; Reading - 162; Speaking - 162; Writing - 169
Read more about specific English Language requirements here.
The University of Aberdeen International Study Centre offers preparation programmes for international students who do not meet the direct entry requirements for undergraduate study. Discover your foundation pathway here.
You will be classified as one of the fee categories below.
Fee category | Cost |
---|---|
RUK | £9,250 |
Tuition Fees for 2025/26 Academic Year | |
EU / International students | £24,800 |
Tuition Fees for 2025/26 Academic Year | |
Home Students | £1,820 |
Tuition Fees for 2025/26 Academic Year |
Students from England, Wales and Northern Ireland, who pay tuition fees may be eligible for specific scholarships allowing them to receive additional funding. These are designed to provide assistance to help students support themselves during their time at Aberdeen.
View all funding options in our Funding Database.
There are many opportunities at the University of Aberdeen to develop your knowledge, gain experience and build a competitive set of skills to enhance your employability. This is essential for your future career success. The Careers and Employability Service can help you to plan your career and support your choices throughout your time with us, from first to final year – and beyond.
You will be taught by a range of experts including professors, lecturers, teaching fellows and postgraduate tutors. However, these may be subject to change - see our Student Terms and Conditions page.
The Aberdeen Software Factory is a student-run software house. Students can gain experience working on larger software projects and benefit from work experience, while clients will benefit from a flexible, cost effective solution to suit their needs.
Find out moreExample - Congratulations to Professor Norval Strachan, Head of Physics at the University of Aberdeen, who has been appointed as Food Standards Scotland's first Chief Scientific Adviser.
Find out morePlacements are encouraged and available within a range of computing firms - summer months, between second and third year, or between third and fourth year.
Discover Uni draws together comparable information in areas students have identified as important in making decisions about what and where to study. You can compare these and other data for different degree programmes in which you are interested.