Computing Science, BSc

Computing Science, BSc

Introduction

Are you excited by the possibilities of quantum computing, blockchain, encryption, data science, machine learning and other emerging artificial intelligence (AI) technologies such as ChatGPT?

A degree in Computing Science offers excellent career prospects across a wide variety of exciting sectors from e-commerce and fintech to healthcare and telecommunications.

At Aberdeen, you will develop practical skills in software development, programming, modelling and web development before moving on to study topics including artificial intelligence, cybersecurity, machine learning and data mining.

Study Information

At a Glance

Learning Mode
On Campus Learning
Degree Qualification
BSc
Duration
48 months
Study Mode
Full Time
Start Month
September
UCAS Code
G400
Pathway Programme Available
Undergraduate Foundation Programme

Computing Science at Aberdeen encompasses both the theory and the practice of computing with particular emphasis on developing your technical analysis, design and programming skills. You will study topics including software programming, databases and data management, computer systems, artificial intelligence (AI) and cyber security and learn to apply your programming and creative problem-solving skills to a wide variety of commercial, scientific and socio-economic contexts.

Our teaching reflects how advances in computing are constantly transforming how we live, learn, work and socialise – from how we detect and treat disease or analyse business, scientific or social data to how we make online shopping easier and more secure.

You will be taught by leading researchers whose work in multi-agent systems, natural language generation, machine learning and blockchain underpins what you will learn in your lectures.

Our teaching is also heavily informed by our strong links with industry organisations, who support our students through guest lectures and seminars as well as prizes (including for example Amazon, CGI and ScotlandIS). Students on our BSc Computing Science have opportunities to undertake placements during their studies, which is an excellent opportunity to gain first-hand professional experience. You can also undertake a full additional year of work placement on our MSci Computing Science with Industrial Placement programme.

BSc Computer Science or MA Computing?

Both the BSc Computer Science and MA Computing contain the same core computing courses. BSc Computing Science students have the option to take further science-related courses as part of their degree while MA Computing students have the option to take other arts-based courses.

What You'll Study

Year 1

Compulsory Courses

Getting Started at the University of Aberdeen (PD1002)

This course, which is prescribed for level 1 undergraduate students (and articulating students who are in their first year at the University), is studied entirely online, takes approximately 5-6 hours to complete and can be taken in one sitting, or spread across a number of weeks.

Topics include orientation overview, equality and diversity, health, safety and cyber security and how to make the most of your time at university in relation to careers and employability.

Successful completion of this course will be recorded on your Enhanced Transcript as ‘Achieved’.

Programming 1 (CS1032)

15 Credit Points

This course will be delivered in two halves. The first half will provide a self-contained introduction to computer programming. It will be accessible to all undergraduates. Students will be exposed to the basic principles of computer programming, e.g. fundamental programming techniques, concepts, algorithms and data structures. The course contains lectures where the principles are systematically developed. As the course does not presuppose knowledge of these principles, we start from basic intuitions. The second half will be particularly of use to those studying Science and Engineering subjects, broadly interpreted, as well as Computing and IT specialists. It will include a gentle introduction to professional issues and security concepts.

Modelling and Problem Solving for Computing (CS1029)

15 Credit Points

This course will introduce students to techniques that support problem solving and modelling with computers, and concepts and methods that are fundamental to computing science. The techniques and concepts will be illustrated with numerous computing examples.

Web Development (CS1534)

15 Credit Points

Students will learn to develop modern web applications using a variety of languages and frameworks as part of their degree, and prepare them for whatever they do after graduation. A key focus will be on the integration of HTML with CSS and Javascript with other backing frameworks to develop dynamic applications. The course is open to all undergraduates, and is accessible to those with no previous experience.

Object - Oriented Programming (CS1527)

15 Credit Points

This course will build on the basic programming skills acquired in the first half-session and equip the students with advanced object oriented programming knowledge, implementation of data structure and algorithms, and basic software engineering techniques. The students will be challenged with more complicated programming problems through a series of continuous assessments.

Optional Courses

Plus, select a further 60 credit points from courses of choice.

Year 2

Compulsory Courses

Software Programming (CS2020)

15 Credit Points

This course is concerned with tools and techniques for scalable and dependable software programming. It focusses primarily on the Java programming language and related technologies. The course gives extensive programming practice in Java. It covers in depth features of the language and how best to use them, the execution model of the language, memory management, design principles underpinning the language, and comparisons with other languages. Tools for collaboration, productivity, and versioning will also be discussed.

Databases and Data Management (CS2019)

15 Credit Points

Databases are an important part of traditional information systems (offline /online) as well as modern data science pipelines. This course will be of interest to anyone who wishes to learn to design and query databases using major database technologies. The course aims to teach the material using case studies from real-world applications, both in lectures and lab classes.

In addition, the course covers topics including management of different kinds of data such as spatial data and data warehousing. The course provides more hands-on training that develops skills useful in practice.

Human - Computer Interaction (CS2506)

15 Credit Points

This course looks at why a computer system that interacts with human beings needs to be usable. It covers a set of techniques that allow usability to be taken into account when a system is designed and implemented, and also a set of techniques to assess whether usability has been achieved. Weekly practical sessions allow students to practice these techniques. The assessed coursework (which is normally carried out by groups of students) gives an opportunity to go through the design process for a concrete computer system, with a particular focus on ensuring usability.

Algorithms and Data Structures (CS2522)

15 Credit Points

This course provides the knowledge needed to understand, design and compare algorithms. By the end of the course, a student should be able to create or adapt algorithms to solve problems, determine an algorithm's efficiency, and be able to implement it. The course also introduces the student to a variety of widely used algorithms and algorithm creation techniques, applicable to a range of domains. The course will introduce students to concepts such as pseudo-code and computational complexity, and make use of proof techniques. The practical component of the course will build on and enhance students' programming skills.

Optional Courses

Plus, select a further 60 credit points from courses of choice.

Year 3

Compulsory Courses

Artificial Intelligence (CS3033)

15 Credit Points

The course provides an introduction to Artificial Intelligence (AI). It discusses fundamental problems of AI and their computational solution via key concepts.

Operating Systems (CS3026)

15 Credit Points

This course discusses core concepts and architectures of operating systems, in particular the management of processes, memory and storage structures. Students will learn about the scheduling and operation of processes and threads, problems of concurrency and means to avoid race conditions and deadlock situations. The course will discuss virtual memory management, file systems and issues of security and recovery. In weekly practical session, students will gain a deeper understanding of operating system concepts with various programming exercises.

Principles of Software Engineering (CS3028)

15 Credit Points

Students will develop large commercial and industrial software systems as a team-based effort that puts technical quality at centre stage. The module will focus on the early stage of software development, encompassing team building, requirements specification, architectural and detailed design, and software construction. Group work (where each team of students will develop a system selected using a business planning exercise) will guide the software engineering learning process. Teams will be encouraged to have an active, agile approach to problem solving through the guided study, evaluation and integration of practically relevant software engineering concepts, methods, and tools.

Distributed Systems and Security (CS3524)

15 Credit Points

This course discusses core concepts of distributed systems, such as programming with distributed objects, multiple threads of control, multi-tire client-server systems, transactions and concurrency control, distributed transactions and commit protocols, and fault-tolerant systems. The course also discusses aspects of security, such as cryptography, authentication, digital signatures and certificates, SSL etc. Weekly practical sessions cover a set of techniques for the implementation of distributed system concepts such as programming with remote object invocation, thread management and socket communication.

Enterprise Computing and Business (CS3525)

15 Credit Points

This course provides insight into the business reasons for large software systems such as loyalty card systems, backend systems integrating firms and their suppliers and larges systems that integrate payroll, finance and operational parts of a business. You also learn the entrepreneurial aspects of business during the practical sessions where you explore and develop your own business application idea using service design and lean startup approaches centred around customer development, which you will find useful in any future work. This course is open to anyone across the university and requires no programming experience.

Software Engineering and Professional Practice (CS3528)

15 Credit Points

In this module, which is the follow-up of CS3028, students will focus on the team-based development of a previously specified, designed, and concept-proofed software system. Each team will build their product to industrial-strength quality standards following an agile process and applying the software engineering concepts, methods, and tools introduced in CS3028. The course includes a series of mandatory participatory seminars on professional and management issues in IT and IT projects. Students will be expected to relate their engineering work to these issues.

Optional Courses

Plus 30 credit points from courses of choice.

Year 4

Compulsory Courses

Research Methods (CS4040)

15 Credit Points

In this course, you will conduct an individual research project into the behaviour of a computing system. You will develop knowledge and understanding of rigorous methods to: explore computing system behaviour; identify questions about behaviour; design experiments to answer those questions; analyse experimental results; and report on the outcomes of your research. You will develop your understanding of research ethics and how this relates to professional behaviour.

Security (CS4028)

15 Credit Points

The course provides a solid foundation in computer and information security. It will cover topics of Information and Risk, Threats and Attacks, Cybersecurity Architecture and Operations, Secure Systems and Products, Cybersecurity Management and Trustworthy Software.

Introduction to Machine Learning and Data Mining (CS4049)

15 Credit Points

This course provides an introduction to machine learning and data mining. Students will learn how to analyse complex datasets by applying data pre-processing, exploration, clustering and classification, time-series analysis, neural networks, and many other techniques. This course is particularly suitable for those who are interested in working as data analysts or data scientists in the future.

Single Honours Computing Project (CS4529)

60 Credit Points

Consists of a supervised project which provides experience of investigating a real problem in computing science, or a computing application/technology. Learners will apply knowledge and skills gained earlier in their degree programme, and seek to go even further. Managing the project and presenting the results obtained are an integral part of the investigation.

Optional Courses

Plus 15 credits from courses of choice to make up 120 credit points

We will endeavour to make all course options available. However, these may be subject to change - see our Student Terms and Conditions page.

How You'll Study

A degree in Computing Science is taught via a selection of compulsory and optional courses to enhance your learning, preparing you for a future career or further study. In each year you will take courses adding up to 120 credits. Depending on the number of compulsory and optional courses offered by your degree, you can also choose other eligible courses which fit your timetable.

Learning Methods

  • Group Projects
  • Individual Projects
  • Lab Work
  • Lectures
  • Research
  • Tutorials

Assessment Methods

Students are assessed by any combination of three assessment methods:

  • coursework such as essays and reports completed throughout the course;
  • practical assessments of the skills and competencies learnt on the course; and
  • written examinations at the end of each course.

The exact mix of these methods differs between subject areas, year of study and individual courses.

Honours projects are typically assessed on the basis of a written dissertation.

Why Study Computing Science?

  • We focus on applying your practical programming skills and deep understanding of computer science theory to solving real-world problems.
  • You will develop practical skills in software development, programming, modelling and web development before moving on to study topics including artificial intelligence, cybersecurity, machine learning and data mining.
  • We run a variety of social and professional events regularly including; ACM programming Contest, Code The City and Global Service Jam.
  • The Aberdeen University Artificial Intelligence Society and the Aberdeen University Computing Society provide a forum for students to share their interest and expertise in computing through workshops, guest talks, coding challenges and social events.
  • We keep you updated with exciting computing science opportunities such as networking events, career fairs, internships, placements and graduate jobs
  • We work closely with the Careers and Employability Service to support you with one-on-one mock interviews, CV planning, and more.
  • We also help to organise sector career fairs in technology, business, finance, and other related areas where you get to interact directly with the employers.
  • The Aberdeen Software Factory is a student-run software house that enables you to gain experience working on larger software projects for external clients.
  • Some of the organisations that our graduates have gone to work for in recent years include Google, Citi Bank, Coca-Cola, Danske Bank, Dell, Disney Pixar, Morgan Stanley, Huawei, JPMorgan Chase, GE Digital and Allianz Insurance.
  • You will have opportunities to undertake placements during your programme, which is an excellent opportunity to gain first-hand professional experience. If you want to undertake a full additional year of work placement, you can apply to MSci Computing Science with Industrial Placement programme, an integrated Master's programme that adds a year-long placement in industry to the 4-year BSc Computing Science degree.
  • We also offer a five-year integrated Master's degree - MEng Computing Science - which combines our BSc Computing Science with an additional year of postgraduate level study to enable you further develop your expertise in areas including artificial intelligence, machine learning and cybersecurity.
  • The University of Aberdeen is a member of the Turing University Network, a network of UK universities engaged in cutting-edge teaching and research in data science and AI.

Aberdeen Global Scholarship

The University of Aberdeen is delighted to offer eligible self-funded international on-campus undergraduate students a £6,000 scholarship for every year of their programme.

View the Aberdeen Global Scholarship

What Our Students Say

Aron Molnar

Aron Molnar

Aron Molnar

We had a two-semester course, which was essentially a tech startup simulator. We were in teams, and we had to come up with an idea, implement it, market research it, and the at the end of the year, present it at a competition.

Aleksandra Nenkova

Aleksandra Nenkova

Aleksandra Nenkova

By far the most enjoyable part was my two courses in software engineering in 3rd year. Working on a project with a big group of people that imitates the actual development cycle seen in industry was very interesting and rewarding.

Entry Requirements

Qualifications

The information below is provided as a guide only and does not guarantee entry to the University of Aberdeen.


General Entry Requirements

2024 Entry

SQA Highers

Standard: AABB*

Applicants who have achieved AABB (or better), are encouraged to apply and will be considered. Good performance in additional Highers/ Advanced Highers may be required.

Minimum: BBB*

Applicants who have achieved BBB (or are on course to achieve this by the end of S5) are encouraged to apply and will be considered. Good performance in additional Highers/Advanced Highers will normally be required.

Adjusted: BB*

Applicants who have achieved BB, and who meet one of the widening access criteria are are guaranteed a conditional offer. Good performance in additional Highers/Advanced Highers will be required.

* Including good performance in at least two Mathematics/ Science subjects by the end of your senior phase of education.

More information on our definition of Standard, Minimum and Adjusted entry qualifications.

A LEVELS

Standard: BBB*

Minimum: BBC*

Adjusted: CCC*

* Including good performance in at least two Mathematics/ Science subjects by the end of your senior phase of education.

More information on our definition of Standard, Minimum and Adjusted entry qualifications.

International Baccalaureate

32 points, including 5, 5, 5 at HL, with two Mathematics/ Science subjects at HL.

Irish Leaving Certificate

5H with 3 at H2 AND 2 at H3 including a minimum of H3 from two Science or Mathematics subjects.

Entry from College

Advanced entry to this degree may be possible from some HNC/HND qualifications, please see www.abdn.ac.uk/study/articulation for more details.

2025 Entry

SQA Highers

Standard: BBBB*

Applicants who have achieved BBBB (or better), are encouraged to apply and will be considered. Good performance in additional Highers/ Advanced Highers may be required.

Minimum: BBC

Applicants who have achieved BBC at Higher and meet one of the widening participation criteria above are encouraged to apply and are guaranteed an unconditional offer for MA, BSc and BEng degrees.

Adjusted: BB

Applicants who have achieved BB at Higher, and who meet one of the widening participation criteria above are encouraged to apply and are guaranteed an adjusted conditional offer for MA, BSc and BEng degrees.

We would expect to issue a conditional offer asking for one additional C grade at Higher.

Foundation Apprenticeship: One FA is equivalent to a Higher at A. It cannot replace any required subjects.

* Including good performance in at least two Mathematics/ Science subjects by the end of your senior phase of education.

More information on our definition of Standard, Minimum and Adjusted entry qualifications.

A LEVELS

Standard: BBC*

Minimum: BCC*

Adjusted: CCC*

* Including good performance in at least two Mathematics/ Science subjects by the end of your senior phase of education.

More information on our definition of Standard, Minimum and Adjusted entry qualifications.

International Baccalaureate

32 points, including 5, 5, 5 at HL, with two Mathematics/ Science subjects at HL.

Irish Leaving Certificate

5H with 3 at H2 AND 2 at H3 including a minimum of H3 from two Science or Mathematics subjects.

Entry from College

Advanced entry to this degree may be possible from some HNC/HND qualifications, please see www.abdn.ac.uk/study/articulation for more details.

The information displayed in this section shows a shortened summary of our entry requirements. For more information, or for full entry requirements for Sciences degrees, see our detailed entry requirements section.


English Language Requirements

To study for an Undergraduate degree at the University of Aberdeen it is essential that you can speak, understand, read, and write English fluently. The minimum requirements for this degree are as follows:

IELTS Academic:

OVERALL - 6.0 with: Listening - 5.5; Reading - 5.5; Speaking - 5.5; Writing - 6.0

TOEFL iBT:

OVERALL - 78 with: Listening - 17; Reading - 18; Speaking - 20; Writing - 21

PTE Academic:

OVERALL - 59 with: Listening - 59; Reading - 59; Speaking - 59; Writing - 59

Cambridge English B2 First, C1 Advanced or C2 Proficiency:

OVERALL - 169 with: Listening - 162; Reading - 162; Speaking - 162; Writing - 169

Read more about specific English Language requirements here.

International Applicants who do not meet the Entry Requirements

The University of Aberdeen International Study Centre offers preparation programmes for international students who do not meet the direct entry requirements for undergraduate study. Discover your foundation pathway here.

Fees and Funding

You will be classified as one of the fee categories below.

Fee information
Fee category Cost
RUK £9,250
Tuition Fees for 2025/26 Academic Year
EU / International students £24,800
Tuition Fees for 2025/26 Academic Year
Home Students £1,820
Tuition Fees for 2025/26 Academic Year

Additional Fees

  • In exceptional circumstances there may be additional fees associated with specialist courses, for example field trips. Any additional fees for a course can be found in our Catalogue of Courses.
  • For more information about tuition fees for this programme, including payment plans and our refund policy, please visit our Tuition Fees page.

Scholarships and Funding

UK Scholarship

Students from England, Wales and Northern Ireland, who pay tuition fees may be eligible for specific scholarships allowing them to receive additional funding. These are designed to provide assistance to help students support themselves during their time at Aberdeen.

Aberdeen Global Scholarship

The University of Aberdeen is delighted to offer eligible self-funded international on-campus undergraduate students a £6,000 scholarship for every year of their programme. More about this funding opportunity.

Funding Database

View all funding options in our Funding Database.

Careers

The employment record of our graduates is excellent, with the vast majority entering occupations of their choice within three months of graduation. Our graduates have taken up posts in sectors as diverse as banking, pharmaceuticals and computer game development. Recent employers include IBM, Amazon, BP, ConocoPhillips, Hewlett Packard, EDS, CGI, Wipro, Scottish Hydro Electric, Scottish & Newcastle Breweries, British Telecom, QinetiQ and the National Health Service.

Career Opportunities

  • Graduate Programmer
  • Graduate Support Engineer
  • Release Engineer
  • Research Assistant
  • Software Developer
  • Technical Consultant

The Inform Prize

The Inform Prize is an annual competition where students design apps that help overcome a real-world problem before presenting it to a group of industry figures.

What our Alumni Say

Donald MacRae

Donald MacRae

Donald MacRae

Job Details
HR Director, Strategic Talent Planning at Microsoft
Graduated 1986

Remember that in the end you are doing this for end consumers/customers, it's not just about being the smartest programmer! And secondly I would advise young people to pay attention to the world of AI, machine learning and Data Sciences

Our Experts

Find out about the experts you will be taught by.

Information About Staff Changes

You will be taught by a range of experts including professors, lecturers, teaching fellows and postgraduate tutors. However, these may be subject to change - see our Student Terms and Conditions page.

Features

Image for Aberdeen Software Factory
Aberdeen Software Factory

Aberdeen Software Factory

The Aberdeen Software Factory is a student-run software house. Students can gain experience working on larger software projects and benefit from work experience, while clients will benefit from a flexible, cost effective solution to suit their needs.

Find out more
Image for Computing Placements
Computing Placements

Computing Placements

Placements are encouraged and available within a range of computing firms - summer months, between second and third year, or between third and fourth year.

Discover Uni

Discover Uni draws together comparable information in areas students have identified as important in making decisions about what and where to study. You can compare these and other data for different degree programmes in which you are interested.

Get in Touch

Contact Details

Address
Student Recruitment & Admissions
University of Aberdeen
University Office
Regent Walk
Aberdeen
AB24 3FX

Social Media