Computing Science (Cybersecurity), MEng

Computing Science (Cybersecurity), MEng

Introduction

The MEng Computing Science is a five-year integrated Master's degree that combines our four-year BSc Computing Science with an additional year of postgraduate study. This extra year enables you to deepen your expertise in cybersecurity.

Study Information

At a Glance

Learning Mode
On Campus Learning
Degree Qualification
MEng
Duration
60 months
Study Mode
Full Time
Start Month
September
Location of Study
Aberdeen
UCAS Code
I108

Computing Science at Aberdeen covers both theoretical and practical aspects, emphasizing technical analysis, design, and programming skills. You'll study software programming, databases, data management, computer systems, AI, and cybersecurity, applying your skills to various commercial, scientific, and socio-economic contexts.

Our teaching reflects the continuous transformation of computing in everyday life, from disease detection and treatment to business and social data analysis, and secure online shopping.

You'll learn from leading researchers whose work in multi-agent systems, natural language generation, machine learning, and blockchain is integrated into your lectures. Our strong industry connections, with companies like Amazon, CGI, and ScotlandIS, enrich your education through guest lectures, seminars, and prizes. Additionally, placements offer valuable professional experience.

The fifth year of this programme covers fundamental concepts and practical skills in cybersecurity, preparing you for a high-demand career. According to the National Cyber Security Centre (part of GCHQ), the UK must accelerate efforts to improve cyber resilience in critical industries.

You'll study cryptography, network protocols, access control, authentication, security management, and web security, along with emerging technologies like Software-defined Networking (SDN), Internet of Things (IoT), and blockchain. You'll develop digital forensic techniques and understand the legal and governance aspects of incident detection, investigation, and response.

What You'll Study

Year 1

Compulsory Courses

Getting Started at the University of Aberdeen (PD1002)

This course, which is prescribed for level 1 undergraduate students (and articulating students who are in their first year at the University), is studied entirely online, takes approximately 5-6 hours to complete and can be taken in one sitting, or spread across a number of weeks.

Topics include orientation overview, equality and diversity, health, safety and cyber security and how to make the most of your time at university in relation to careers and employability.

Successful completion of this course will be recorded on your Enhanced Transcript as ‘Achieved’.

Programming 1 (CS1032)

15 Credit Points

This course will be delivered in two halves. The first half will provide a self-contained introduction to computer programming. It will be accessible to all undergraduates. Students will be exposed to the basic principles of computer programming, e.g. fundamental programming techniques, concepts, algorithms and data structures. The course contains lectures where the principles are systematically developed. As the course does not presuppose knowledge of these principles, we start from basic intuitions. The second half will be particularly of use to those studying Science and Engineering subjects, broadly interpreted, as well as Computing and IT specialists. It will include a gentle introduction to professional issues and security concepts.

Modelling and Problem Solving for Computing (CS1029)

15 Credit Points

This course will introduce students to techniques that support problem solving and modelling with computers, and concepts and methods that are fundamental to computing science. The techniques and concepts will be illustrated with numerous computing examples.

Web Development (CS1534)

15 Credit Points

Students will learn to develop modern web applications using a variety of languages and frameworks as part of their degree, and prepare them for whatever they do after graduation. A key focus will be on the integration of HTML with CSS and Javascript with other backing frameworks to develop dynamic applications. The course is open to all undergraduates, and is accessible to those with no previous experience.

Object - Oriented Programming (CS1527)

15 Credit Points

This course will build on the basic programming skills acquired in the first half-session and equip the students with advanced object oriented programming knowledge, implementation of data structure and algorithms, and basic software engineering techniques. The students will be challenged with more complicated programming problems through a series of continuous assessments.

Optional Courses

Plus, select a further 60 credit points from courses of choice.

Year 2

Compulsory Courses

Software Programming (CS2020)

15 Credit Points

This course is concerned with tools and techniques for scalable and dependable software programming. It focusses primarily on the Java programming language and related technologies. The course gives extensive programming practice in Java. It covers in depth features of the language and how best to use them, the execution model of the language, memory management, design principles underpinning the language, and comparisons with other languages. Tools for collaboration, productivity, and versioning will also be discussed.

Databases and Data Management (CS2019)

15 Credit Points

Databases are an important part of traditional information systems (offline /online) as well as modern data science pipelines. This course will be of interest to anyone who wishes to learn to design and query databases using major database technologies. The course aims to teach the material using case studies from real-world applications, both in lectures and lab classes.

In addition, the course covers topics including management of different kinds of data such as spatial data and data warehousing. The course provides more hands-on training that develops skills useful in practice.

Human - Computer Interaction (CS2506)

15 Credit Points

This course looks at why a computer system that interacts with human beings needs to be usable. It covers a set of techniques that allow usability to be taken into account when a system is designed and implemented, and also a set of techniques to assess whether usability has been achieved. Weekly practical sessions allow students to practice these techniques. The assessed coursework (which is normally carried out by groups of students) gives an opportunity to go through the design process for a concrete computer system, with a particular focus on ensuring usability.

Algorithms and Data Structures (CS2522)

15 Credit Points

This course provides the knowledge needed to understand, design and compare algorithms. By the end of the course, a student should be able to create or adapt algorithms to solve problems, determine an algorithm's efficiency, and be able to implement it. The course also introduces the student to a variety of widely used algorithms and algorithm creation techniques, applicable to a range of domains. The course will introduce students to concepts such as pseudo-code and computational complexity, and make use of proof techniques. The practical component of the course will build on and enhance students' programming skills.

Optional Courses

Plus, select a further 60 credit points from courses of choice.

Year 3

Compulsory Courses

Artificial Intelligence (CS3033)

15 Credit Points

The course provides an introduction to Artificial Intelligence (AI). It discusses fundamental problems of AI and their computational solution via key concepts.

Operating Systems (CS3026)

15 Credit Points

This course discusses core concepts and architectures of operating systems, in particular the management of processes, memory and storage structures. Students will learn about the scheduling and operation of processes and threads, problems of concurrency and means to avoid race conditions and deadlock situations. The course will discuss virtual memory management, file systems and issues of security and recovery. In weekly practical session, students will gain a deeper understanding of operating system concepts with various programming exercises.

Principles of Software Engineering (CS3028)

15 Credit Points

Students will develop large commercial and industrial software systems as a team-based effort that puts technical quality at centre stage. The module will focus on the early stage of software development, encompassing team building, requirements specification, architectural and detailed design, and software construction. Group work (where each team of students will develop a system selected using a business planning exercise) will guide the software engineering learning process. Teams will be encouraged to have an active, agile approach to problem solving through the guided study, evaluation and integration of practically relevant software engineering concepts, methods, and tools.

Distributed Systems and Security (CS3524)

15 Credit Points

This course discusses core concepts of distributed systems, such as programming with distributed objects, multiple threads of control, multi-tire client-server systems, transactions and concurrency control, distributed transactions and commit protocols, and fault-tolerant systems. The course also discusses aspects of security, such as cryptography, authentication, digital signatures and certificates, SSL etc. Weekly practical sessions cover a set of techniques for the implementation of distributed system concepts such as programming with remote object invocation, thread management and socket communication.

Enterprise Computing and Business (CS3525)

15 Credit Points

This course provides insight into the business reasons for large software systems such as loyalty card systems, backend systems integrating firms and their suppliers and larges systems that integrate payroll, finance and operational parts of a business. You also learn the entrepreneurial aspects of business during the practical sessions where you explore and develop your own business application idea using service design and lean startup approaches centred around customer development, which you will find useful in any future work. This course is open to anyone across the university and requires no programming experience.

Software Engineering and Professional Practice (CS3528)

15 Credit Points

In this module, which is the follow-up of CS3028, students will focus on the team-based development of a previously specified, designed, and concept-proofed software system. Each team will build their product to industrial-strength quality standards following an agile process and applying the software engineering concepts, methods, and tools introduced in CS3028. The course includes a series of mandatory participatory seminars on professional and management issues in IT and IT projects. Students will be expected to relate their engineering work to these issues.

Optional Courses

Plus 30 credit points from courses of choice.

Year 4

Compulsory Courses

Research Methods (CS4040)

15 Credit Points

In this course, you will conduct an individual research project into the behaviour of a computing system. You will develop knowledge and understanding of rigorous methods to: explore computing system behaviour; identify questions about behaviour; design experiments to answer those questions; analyse experimental results; and report on the outcomes of your research. You will develop your understanding of research ethics and how this relates to professional behaviour.

Security (CS4028)

15 Credit Points

The course provides a solid foundation in computer and information security. It will cover topics of Information and Risk, Threats and Attacks, Cybersecurity Architecture and Operations, Secure Systems and Products, Cybersecurity Management and Trustworthy Software.

Introduction to Machine Learning and Data Mining (CS4049)

15 Credit Points

This course provides an introduction to machine learning and data mining. Students will learn how to analyse complex datasets by applying data pre-processing, exploration, clustering and classification, time-series analysis, neural networks, and many other techniques. This course is particularly suitable for those who are interested in working as data analysts or data scientists in the future.

Single Honours Computing Project (CS4529)

60 Credit Points

Consists of a supervised project which provides experience of investigating a real problem in computing science, or a computing application/technology. Learners will apply knowledge and skills gained earlier in their degree programme, and seek to go even further. Managing the project and presenting the results obtained are an integral part of the investigation.

Optional Courses

Plus 15 credits from courses of choice to make up 120 credit points

Year 5

Compulsory Courses

  • CS552P Blockchain and Smart Contracts (15 credit points)
Cybersecurity Fundamentals (CS502L)

15 Credit Points

This course presents the fundamental concepts of Cyber Security, including but not limited to cryptography, network protocols, access control, authentication, security management and web security. This course provides students with the Cyber Security principles for continuing learning and working in the area of Cyber Security.

Security in Emerging Networks (CS502B)

15 Credit Points

This course will cover emerging technologies in cybersecurity such as Software-defined Networking (SDN), Internet of Things (IoT), and Blockchain. It will deliver the role of emerging technologies in cyberspace, what impact we will have on our legacy system and how we can remain agile and efficient. The course will provide a foundation for identifying the significance of technological advancements and cybersecurity issues, and challenges raised in adapting the 5G & beyond network.

Enterprise Security Architecture (CS502C)

15 Credit Points

A major contributing factor to cyber risk is the lack of well-designed cybersecurity architecture that protects against ever-evolving cyber-attacks. A well-designed architecture provides a streamlined workflow for security and non-security practitioners, along with increasing the robustness of an organisation’s cybersecurity. In this course you will gain the advance knowledge to develop, design and analyse security solution architectures to meet your organisation's cybersecurity objectives.

Security Analytics with Artificial Intelligence (CS502M)

15 Credit Points

This course provides an introduction to the analysis of cybersecurity data. It will show how to use tools and methods from data science and machine learning to perform such analysis. Broader issues at the interface of security and privacy with AI will be discussed.

Digital Forensics and Incident Management (CS552E)

15 Credit Points

Data breaches are everywhere, and cyber incidents can be extremely costly for an organization. Therefore, the speed at which you identify a violation and respond to the incident is critical to your data and systems' security. This course will provide technical and legal discussions on incident detection, investigation, response, and digital forensic techniques. It will walk you through best practices for everything from incident response to in-depth digital forensics. This will help the student identify vulnerabilities and better communicate breaches to those impacted.

Ethical Hacking and Web Security (CS552G)

15 Credit Points

This course will deliver approaches and methodologies used for carrying out and managing security and penetration testing, including but not limited to web applications, network protocols, common attacks and security countermeasures. The course will help the student build the ability to design secure systems and defend against intrusion.

Secure Software Design and Development (CS552H)

15 Credit Points

Software bugs and vulnerabilities are the main source of threats to security. This course introduces students to design, development, testing and evaluating secure and dependable software. This course develops students both theoretical and practical skills to define, implement, examine, and manage secure software lifecycle. The course provides necessary skills needed for security professionals ranging from software architects, developers to penetration testers and IT Managers.

Project in Cybersecurity (CS592A)

60 Credit Points

This course will provide students the opportunity to focus on a practical or theoretical problem and investigate the solutions. The research will be carried out under the supervision of a member of staff. Typical projects include improving, or adapting existing cybersecurity practices, theories, and techniques to solve different problems. Students will improve their problem-solving and communication skills, as well as broaden and consolidate knowledge obtained in other components of the degree.

We will endeavour to make all course options available. However, these may be subject to change - see our Student Terms and Conditions page.

How You'll Study

Learning Methods

  • Group Projects
  • Individual Projects
  • Lab Work
  • Lectures
  • Research
  • Seminars
  • Tutorials
  • Workshops

Assessment Methods

Students are assessed by any combination of three assessment methods:

  • coursework such as essays and reports completed throughout the course;
  • practical assessments of the skills and competencies they learn on the course; and
  • written examinations at the end of each course.

The exact mix of these methods differs between subject areas, years of study and individual courses.

Honours projects are typically assessed on the basis of a written dissertation.

Why Study Computing Science (Cybersecurity)?

  • The courses provide highly practical training in penetration testing and ethical hacking, preparing you to identify vulnerabilities and strengthen security.
  • You will also get hands-on experience with enterprise-grade tools for forensic security and learn to investigate security breaches, ensure compliance, and maintain the integrity of your IT infrastructure.
  • You will develop technical expertise and practical skills in identifying and critically evaluating security and data protection techniques in the Internet of Things, 5G Networks, Cloud Computing, Autonomous Vehicles and Industrial Control Systems. 
  • Advanced topics studied include Artificial Intelligence for Information Security, penetration testing, secure software development, information governance and data privacy.
  • Taught by a research-focused computer science department ranked 5th in the UK with strong links to business. All cybersecurity staff members are leaders in their respective fields with strong research and commercial track record.
  • You will use a purpose-built cybersecurity laboratory where students can explore security concepts in a safe environment.
  • Weekly lectures from world renewed researchers and experts from the industry about the emerging trends in cybersecurity

Entry Requirements

Qualifications

The information below is provided as a guide only and does not guarantee entry to the University of Aberdeen.

The information displayed in this section shows a shortened summary of our entry requirements. For more information, or for full entry requirements for Sciences degrees, see our detailed entry requirements section.


English Language Requirements

To study for an Undergraduate degree at the University of Aberdeen it is essential that you can speak, understand, read, and write English fluently. The minimum requirements for this degree are as follows:

IELTS Academic:

OVERALL - 6.0 with: Listening - 5.5; Reading - 5.5; Speaking - 5.5; Writing - 6.0

TOEFL iBT:

OVERALL - 78 with: Listening - 17; Reading - 18; Speaking - 20; Writing - 21

PTE Academic:

OVERALL - 59 with: Listening - 59; Reading - 59; Speaking - 59; Writing - 59

Cambridge English B2 First, C1 Advanced or C2 Proficiency:

OVERALL - 169 with: Listening - 162; Reading - 162; Speaking - 162; Writing - 169

Read more about specific English Language requirements here.

Fees and Funding

Please refer to our Tuition Fees page for fee information for this programme, or contact study@abdn.ac.uk.

Scholarships and Funding

Students from England, Wales and Northern Ireland, who pay tuition fees may be eligible for specific scholarships allowing them to receive additional funding. These are designed to provide assistance to help students support themselves during their time at Aberdeen.

Additional Fees

  • In exceptional circumstances there may be additional fees associated with specialist courses, for example field trips. Any additional fees for a course can be found in our Catalogue of Courses.
  • For more information about tuition fees for this programme, including payment plans and our refund policy, please visit our Tuition Fees page.

Our Funding Database

View all funding options in our Funding Database.

Careers

There are many opportunities at the University of Aberdeen to develop your knowledge, gain experience and build a competitive set of skills to enhance your employability. This is essential for your future career success. The Careers and Employability Service can help you to plan your career and support your choices throughout your time with us, from first to final year – and beyond.

Our Experts

Information About Staff Changes

You will be taught by a range of experts including professors, lecturers, teaching fellows and postgraduate tutors. However, these may be subject to change - see our Student Terms and Conditions page.

Discover Uni

Discover Uni draws together comparable information in areas students have identified as important in making decisions about what and where to study. You can compare these and other data for different degree programmes in which you are interested.

Get in Touch

Contact Details

Address
Student Recruitment & Admissions
University of Aberdeen
University Office
Regent Walk
Aberdeen
AB24 3FX