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Abstract We give a classification of “small” monotone complete C∗-algebras by
order properties. We construct a corresponding semigroup. This classification fil-
ters out von Neumann algebras; they are mapped to the zero of the classifying
semigroup. We show that there are 2c distinct equivalence classes (where c is
the cardinality of the continuum). This remains true when the classification is re-
stricted to special classes of monotone complete C∗-algebras e.g. factors, injective
factors, injective operator systems and commutative algebras which are subalge-
bras of `∞. Some examples and applications are given.
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1 Introduction

Let A be a C∗-algebra then its self-adjoint part Asa has a natural partial ordering.
If each norm bounded, upward directed subset of Asa has a least upper bound then
A is said to be monotone complete; when A is monotone complete it possesses a
unit. Every von Neumann algebra is monotone complete but the converse is false
[5].
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Monotone complete C∗-algebras arise in a number of different areas. For ex-
ample, injective operator systems can always be given the structure of a monotone
complete C∗-algebra and, in the theory of operator spaces, the injective operator
spaces can be realised as “corners” of monotone complete C∗-algebras. [7, Theo-
rem 6.1.3 and Theorem 6.1.6] (see also [11]) When A is a commutative monotone
complete C∗-algebra then its lattice of projections is a complete Boolean algebra.
Conversely, every complete Boolean algebra has a unique (up to isomorphism)
representation of this form. So the study of commutative monotone complete C∗-
algebras is equivalent to the study of complete Boolean algebras. ([10] and [5].
See also [3]).

Let A be a monotone complete C∗-algebra. It is said to be a factor if its cen-
tre is one dimensional. Intuitively speaking, a factor is as far removed from being
commutative as possible. Just as for von Neumann algebras, monotone complete
factors can be divided into Type I, Type II1, Type II∞ and Type III. (See for exam-
ple [3]) An old result of Kaplansky [18] implies that every Type I factor is a von
Neumann algebra. Kaplansky’s result made it natural for him to ask if all factors
were von Neumann algebras. The answer is “no” but to make this intelligible the
following definitions are helpful.

First let us recall that a C∗-algebra A is said to be separably representable if
there exists an (isometric) ∗-isomorphism π from A into L(H), the algebra of all
bounded operators on a separable Hilbert space H.

A (unital) C∗-algebra A is said to be small if there is a unital, complete isometry
from A into L(H), where H is separable. An excellent account of operator spaces,
operator systems, complete isometries, completely positive maps and their prop-
erties is given by Effros and Ruan [7]. When φ is a unital complete isometry of B
into L(H) then φ is a completely positive isometry onto an operator system, and
its inverse is completely positive. [7, Corollary 5.1.2]

Some thirty years ago Wright [40] showed that if a monotone complete factor
A is separably representable then it is a von Neumann algebra. (See also [28]).
Further results of Wright [37] also imply that if a Type II factor is small then it is
also a von Neumann algebra. (See also [4], [8] and [25]). So if a monotone factor
is small and is not a von Neumann algebra then it must be of Type III. (A factor
which is not a von Neumann algebra is called wild.) Finding examples of these
wild Type III factors was elusive. The first examples were due, independently, to
Dyer [6] and Takenouchi [32] and in [25], Saitô showed that both factors are of
Type III; later, as a consequence of a more general result [31], their factors were
shown to be isomorphic. Wright also gave a general construction and showed that
the regular σ -completion of any unital, simple separably representable infinite di-
mensional C∗-algebra was a Type III factor which is never a von Neumann algebra
([38] and [39], see also [22]). For many years only a few examples were known
to be non-isomorphic (see [14], [26] and for large algebras, see [27]), until a big
breakthrough by Hamana [15]. He used delicate cardinality arguments to show
that there are a huge number of mutually non-isomorphic Type III factors which
are not von Neumann algebras but which are small C∗-algebras. (In this context
“huge” means 2c where c is the cardinality of the real numbers). This paper by
Hamana is not yet as widely known as it deserves to be. It is fundamental for
our work here. In turn, his work (like ours) makes key use of ideas of Monk and
Solovay on complete Boolean algebras [21].
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In the first section of this paper we define a quasi ordering between mono-
tone complete C∗-algebras and use this to obtain an equivalence relation. Roughly
speaking, ignoring some set theoretic technicalities for the moment, the equiva-
lence classes of small monotone complete algebras can be organised into a par-
tially ordered, abelian semigroup, W ; where taking direct sums of algebras corre-
sponds to the semigroup addition. Furthermore, we prove that the semigroup has
the Riesz decomposition property. Its zero corresponds to the von Neumann al-
gebras. Influenced by K-theory, a natural response to a non-cancellative, abelian
semigroup is to form its Grothendieck group; this is useless for W since its Gro-
thendieck group is trivial. This is because every element of the semigroup W is
idempotent. By a known general theory [9] this idempotent property implies that
the semigroup can be identified with a join semilattice; then the Riesz decompo-
sition property is equivalent to the semilattice being distributive. This means that
the well established theory of distributive, join semilattices can be applied to W .

The following notation is convenient. For each monotone complete C∗- algebra
A there corresponds an element, w(A), in W such that w(A) = w(B) precisely when
A and B are equivalent. We call w(A) the normality weight of A and W the weight
semigroup.

One feature of this classification theory is that some problems involving factors
can be replaced by problems involving commutative algebras. For example, let A j
( j = 1,2) be commutative monotone complete C∗- algebras; let G j ( j = 1,2) be
countable discrete groups with free, ergodic actions on, respectively, A j ( j = 1,2).
Then, by a cross product construction using these group actions, we can construct
monotone complete C∗-factors B j ( j = 1,2). It turns out to be easy to show that
w(B j) = w(A j) for j = 1,2. Now suppose we know that w(A1) = w(A2). Then the
factors B1 and B2 must have the same normality weight. In particular, when we
apply the cross product construction to inequivalent commutative algebras then
the factors constructed cannot be isomorphic.

For each monotone complete C∗-algebra, A, we define a spectroid, ∂A. It turns
out that if A and B have the same normality weight then ∂A = ∂B. So the spectroid
is an invariant for the elements of the weight semigroup. (To be more precise there
is a family of spectroids. On fixing a parameter set T and an injective map N
from T into the collection of infinite subsets of N, we can obtain a corresponding
spectroid for each A).

We know that the classification classes can contain very diverse algebras. For
example, all small von Neumann algebras are equivalent to C. On the other hand,
the classification is sufficiently refined to distinguish between a huge number of
small monotone complete algebras; the cardinality of the semigroup W is 2c. (We
make use of spectroids to show this). When restricted to subclasses (e.g. small
factors, small injective factors, injective operator systems, commutative monotone
complete algebras which are subalgebras of `∞) the normality weight classification
still distinguishes between 2c objects. Many possible generalisations and modifi-
cations of these constructs are possible; some of these will be indicated below.
They will be presented in later work. In this paper we strive to maximise clarity
rather than generality.

We modify the approach of Monk-Solovay [21] and of Hamana [15], to con-
struct examples of small commutative monotone complete C∗-algebras. We show
that these algebras take 2c-distinct normality weights. We show that each of our
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examples is of the form B∞(K)/J where K is the Cantor space, {0,1}N, and B∞(K)
is the algebra of bounded Borel functions on K and J is a σ -ideal of B∞(K). More-
over each of these B∞(K)/J can be embedded as a closed ∗-subalgebra of `∞. We
can construct 2c ideals such that, for every countably infinite discrete group G,G
has a free, ergodic action on B∞(K)/J and the weights of these algebras take 2c

distinct values. Such actions lead, by using cross products, to associated small
wild factors.

We begin this construction by taking the product space {0,1}R. This is a com-
pact Hausdorff space which, somewhat surprisingly, has a countable dense subset
[16]. Let D0 be any countable, infinite subset of {0,1}R. Then let D be the clo-
sure of D0. Clearly D is a compact Hausdorff space with a countable dense subset,
D0. So there is a natural isometric ∗-isomorphism of C(D) into `∞. By a general
theory, the regular (σ -)completion of C(D) can be identified with a commutative
monotone complete algebra which can be embedded as a subalgebra of `∞. The
structure space of each such commutative monotone complete algebra can be iden-
tified with a closed subspace of {0,1}R. By appropriate choices of the countable
set D0 we find the algebras we need.

Monotone complete C∗-algebras are a generalisation of von Neumann alge-
bras. The theory of the latter is now very well developed. Major breakthroughs by
McDuff [20] and Powers [24] constructed the first infinite collections of factors of,
respectively, Type II1 and Type III (see also Sakai [30], Araki-Woods [2], Krieger
[19]). Then the work of Takesaki, Connes and the other giants of the subject trans-
formed the theory and understanding of von Neumann algebras (see [34]). This
theory was so powerful and so dominant that, for many years, people strived to
imitate it for general monotone complete C∗-algebras. This had only mixed suc-
cess. With the major advance of Hamana [15] as our starting point we give a
classification which is totally different from the methods used in von Neumann
algebra theory.

The following analogy may be helpful. Consider a vast city where each build-
ing contains a small monotone complete C∗-algebra and every algebra which is
isomorphic to it. By Hamana’s pioneering work [15], there are 2c-buildings. Our
classification splits the whole city into parallel avenues, running west to east. At
the centre is the 0th avenue, housing all the small von Neumann algebras. There
are 2cavenues. Intersecting the avenues are streets running north to south. One
of these streets is that where all the small commutative algebras are to be found.
Many other streets remain to be explored before a complete map of the city can
be made. Nevertheless the classification given here helps to bring some order out
of chaos.

2 Preliminaries

Let us recall that a C∗-algebra is monotone σ -complete if each upper bounded,
monotone increasing sequence of self-adjoint elements has a supremum. Clearly
all monotone complete C∗-algebras are monotone σ -complete but the converse is
false. (For example the algebra of all bounded Borel functions on the unit interval
is monotone σ -complete but not monotone complete).
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Lemma 1 [29] Let A be a monotone σ -complete C∗-algebra. Let there exist a
positive linear functional µ : A → C which is faithful. Then A is monotone com-
plete. Whenever Λ is a downward directed subset of Asa which is bounded below,
there exists a monotone decreasing sequence (xn), with each xn ∈ Λ , such that∧

∞
n=1 xn is the greatest lower bound of Λ .

Corollary 1 When a small C∗-algebra is monotone σ -complete then it is mono-
tone complete.

Proof Each small C∗-algebra, A, has a faithful state; because A has a positive
linear injection into L(H), where H is separable. ut

Proposition 1 Whenever A is a small C∗-algebra then its cardinality is c = 2ℵ0 .

Proof Because H has a countable orthonormal basis, each operator on H can be
represented by an infinite N×N matrix over the complex numbers. So L(H) in-
jects into CN×N which has cardinality c. Since A can be injected into L(H), it too
has cardinality c. ut

The following proposition is not essential for the work that follows so we omit
the proof. For a definition of the Pedersen Borel envelope, see [23].

Proposition 2 Let A be any C∗-algebra of cardinality c. Then B∞(A), the Pedersen
Borel Envelope of A, has cardinality c.

Corollary 2 Whenever A is a small C∗-algebra then its Pedersen Borel Envelope
has cardinality c.

We use #S to denote the cardinality of a set S.

Proposition 3 Let A be any C∗-algebra of cardinality c. Then it has a faithful
representation on a Hilbert space of cardinality c.

Proof We may assume that the algebra is unital, if not we can adjoin a unit without
increasing the cardinality.

For each a ∈ A\{0}, there is a pure state φa such that φa(aa∗) 6= 0. By the
GNS process and the fact that the state is pure, there is a surjection from A onto
the corresponding GNS Hilbert space H(φa). So #H(φa) ≤ #A = c. Let H be the
Hilbert space direct sum of {H(φa) : a ∈ A\{0}}. So H has an orthonormal basis
of cardinality not exceeding c× c = c. Since each element of the Hilbert space
is orthogonal to all but countably many basis elements, #H ≤ c× cℵ0 = c. The
natural representation of A on H is faithful. ut

Remark 1 When A is a monotone σ -complete C∗-algebra and D is a downward di-
rected set in A+ which is countable and bounded below then there exists a mono-
tone decreasing sequence (cn) (n = 1,2, . . . ) in D such that

∧
∞
n=1 cn is a lower

bound for D and hence the infimum of D. This is easily proved by an inductive
construction of the sequence.

Remark 2 Whenever A is a monotone σ -complete C∗-algebra then there is a σ -
homomorphism from its Pedersen Borel envelope, B∞(A), onto A [36].
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Remark 3 Let H be a separable infinite dimensional Hilbert space and let V be
the collection of all von Neumann subalgebras of L(H). Then #V = c.

Proposition 4 Each small von Neumann algebra is separably representable as a
von Neumann algebra subalgebra of L(H) where H is a separable Hilbert space.

Proof Let A be a small unital C∗-algebra. Then its state space can be identified
with the state space of an operator system in L(H), where H is a separable Hilbert
space. By the Hahn-Banach Theorem this state space is the continuous image of
the state space of L(H) and hence is separable. Let A be a von Neumann algebra.
Then, by a theorem of Akemann [1], A has a norm separable predual and hence A
has a faithful normal separable representation. In other words, A can be identified
with a von Neumann subalgebra of L(H), where H is a separable Hilbert space.
ut

3 Classification semigroups

Our focus is on small monotone complete C∗-algebras but much of the work here
can be done in much greater generality. In one direction, weight semigroups can be
defined, with no extra difficulty, for monotone complete C∗-algebras of arbitrary
size. To avoid some set theoretic difficulties we fix a large Hilbert space H# and,
for the rest of this section, only consider algebras which are isomorphic to subal-
gebras of L(H#). For (unital) small C∗-algebras, their Pedersen Borel envelopes,
or more generally any (unital) C∗-algebra of cardinality c = 2ℵ0 , it suffices if H#

has an orthonormal basis of cardinality c = 2ℵ0 . (See Section 2) We call the cor-
responding classification semigroup, W , the normality weight semigroup.

Let A and B be monotone complete C∗-algebras and let φ : A→ B be a positive
linear map. We recall that φ is faithful if x≥ 0 and φ(x) = 0 implies x = 0.

Definition 1 Let A and B be monotone complete C∗-algebras and let φ : A→ B be
a positive linear map. Then φ is said to be normal if, whenever D is a downward
directed set of positive elements of A,φ maps the infimum of D to the infimum of
{φ(d) : d ∈ D}.

When defining the classification semigroup we shall use positive linear maps
which are faithful and normal. By varying the conditions on φ we get a slightly
different theory. For example, we could strengthen the conditions on φ by also re-
quiring it to be completely positive. Essentially all the construction in this section
can also be carried out with completely positive maps. We then get a semigroup
which has a natural quotient onto the semigroup W . On the other hand, we could
weaken the conditions by (i) only requiring φ to be σ -normal and (ii) only re-
quiring the algebras to be monotone σ -complete; we still obtain a classification
semigroup but can no longer show that it has the Riesz decomposition property.
When we restrict our attention to small C∗-algebras, we saw in Section 2 that
monotone σ -complete implies monotone complete. So in this setting, normal and
σ -normal maps coincide.

Let Ω be the class of all monotone complete C∗-algebras which are isomorphic
to norm closed ∗-subalgebras of L(H#); and let Ω # be the set of all C∗-subalgebras
of L(H#) which are monotone complete (in themselves, they cannot be monotone
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closed subalgebras of L(H#) unless they are von Neumann algebras). So every
A ∈Ω is isomorphic to an algebra in Ω #.

We define a relation on Ω by A - B if there exists a positive linear map φ :
A→ B which is faithful and normal.

Let π be an isomorphism of A onto B. Then π and π−1 are both normal so
A - B and B - A. Now suppose π is an isomorphism of A onto a subalgebra of
B. Then π need not be normal. It will only be normal if its range is a monotone
closed subalgebra of B. In particular, if A is a monotone closed subalgebra of B,
then by taking the natural injection as φ , we see that A - B.

Lemma 2 Let A,B,C be in Ω . If A - B and B - C then A - C. Also A - A.

Proof There exists a normal, faithful positive linear map φ : A → B and there
exists a normal, faithful positive linear map ψ : B→C.

Then ψ ◦φ : A→C is a normal, faithful positive linear map.
The identity map from A to A is a surjective isomorphism and so, by the re-

marks above, A - A. ut

Lemma 3 Let A and B be in Ω . Then A⊕B is also in Ω .

Proof Since H# is an infinite dimensional Hilbert space it is isomorphic to the
direct sum of two isomorphic copies of itself, H1⊕H2. Then A is isomorphic to
A1 ⊂ L(H1) and B is isomorphic to B2 ⊂ L(H2). Then A⊕ B is isomorphic to
A1⊕B1 and clearly A1⊕B1 can be identified with a subalgebra of L(H1⊕H2) =
L(H#). It is straightforward to verify that A⊕B is monotone complete. So A⊕B
is in Ω . ut

It is clear that Lemma 3 implies that Ω is closed under the taking of finite
direct sums. In fact more is true:

Lemma 4 Let (An) (n = 1,2, . . . ) be a sequence of algebras in Ω . Then the infinite
direct sum ⊕An is in Ω .

Proof The proof is essentially the same as in the preceding lemma, except we split
H# into a countable direct sum of isomorphic copies of itself. ut

Remark 4 If, in Lemma 4, each of the algebras An is a small C∗-algebra then ⊕An
is also small.

Lemma 5 Let A1 - B1 and A2 - B2 where A1,B1,A2 and B2 are in Ω . Then A1⊕
A2 - B1⊕B2.

Proof By hypothesis, there exist faithful, normal positive linear maps φ j : A j →B j
for j = 1,2.

We define ψ : A1⊕A2 → B1⊕B2 by ψ(a1⊕a2) = φ1(a1)⊕φ2(a2). Then it is
straightforward to verify that ψ is a faithful, normal positive linear map. ut

We now define a relation ∼ on Ω by A∼ B if A - B and B - A.

Lemma 6 The relation ∼ is an equivalence relation on Ω .

Proof By Lemma 2, A∼ A. Again by Lemma 2, if A∼ B and B∼C then A∼C.
ut
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Lemma 7 If A1 ∼ B1 and A2 ∼ B2 then A1⊕A2 ∼ B1⊕B2.

Proof This follows from Lemma 5. ut

We adopt the following temporary notation. For each A ∈Ω # we define [A] to
be the set of all B in Ω # such that B∼ A.

Let W = {[A] : A be a closed ∗-subalgebra of L(H#), and A is a monotone
complete C∗-algebra.

For each B ∈ Ω , there is an isomorphism π from B onto A ∈ Ω #; we define
w(B) to be [A]. It is clear that w is well defined. In particular w(A) = w(B) if,
and only if, A∼ B. So, by Lemma 7, w(A1) = w(B1) and w(A2) = w(B2) implies
w(A1⊕A2) = w(B1⊕B2). It follows that we can define an operation + on W by
setting w(A)+w(B) = w(A⊕B). The associativity of taking direct sums immedi-
ately implies that + is associative on W . So (W,+) is a semigroup; we shall abuse
our notation and use W for both the semigroup and the underlying set.

Proposition 5 W is an abelian semigroup with a zero element. The zero element
is w(C), where C is the one dimensional algebra, the complex numbers.

Proof Consider w(A) and w(B). Define φ : A⊕B → B⊕A by φ(a⊕ b) = b⊕ a.
Then φ is a surjective ∗- isomorphism. Hence w(A⊕B) = w(B⊕A). So w(A)+
w(B) = w(B)+w(A).

Fix A. Let φ : A → A⊕C be defined by φ(a) = a⊕ 0. Then φ is positive,
normal and faithful. So A - A⊕C.

Now consider ψ : A⊕C→A defined by ψ(a⊕λ ) = a+λ1, where 1 is the unit
element of the algebra A. Then ψ is positive and normal. Suppose that ψ(aa∗⊕
λλ ) = 0. Then aa∗+ |λ |21 = 0. So a = 0 and λ = 0. i.e. ψ is faithful. So A⊕C -
A. Hence

w(A) = w(A⊕C) = w(A)+w(C). ut

We shall denote the zero element of W by 0.

Proposition 6 Each element of W is idempotent, that is, w(A)+w(A) = w(A).

Proof Let φ : A⊕A → A be defined by φ(a⊕ b) = a + b. Then φ is a faithful,
normal positive linear map. So A⊕A - A.

Now consider ψ : A → A⊕A defined by ψ(a) = a⊕ a. Then ψ is a faithful,
normal positive linear map. So A - A⊕A. ut

From Lemma 2, we see that if A1 ∼ A2 - B1 ∼ B2 then A1 - B2. So, without
ambiguity, we may define w(A)≤ w(B) if, and only if A - B.

Lemma 8 The relation ≤ is a partial ordering of the semigroup W. Then 0 ≤
w(A) for all elements of W. Also, w(A1) ≤ w(B1) and w(A2) ≤ w(B2) implies
w(A1)+w(A2)≤ w(B1)+w(B2).

Proof For any A consider the positive linear map φ : C→A defined by φ(λ ) = λ1.
Then φ is faithful and normal. So C - A hence 0≤ w(A). The second part of the
lemma follows from Lemma 5. ut

Corollary 3 In the partially ordered semigroup W, w(A)+w(B) is the least upper
bound of w(A) and w(B).
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Proof Since w(A)≤ w(A) and 0≤ w(B), we have w(A)+0≤ w(A)+w(B). Sim-
ilarly w(B)≤ w(A)+w(B).

Now suppose that w(X) is an upper bound for w(A) and w(B). Then w(A)+
w(B)≤ w(X)+w(X) = w(X). ut

Corollary 4 w(A)≤ w(B) if and only if w(A)+w(B) = w(B).

Proof w(A)≤ w(B) if and only if w(B) equals the least upper bound of w(A) and
w(B). ut

Proposition 7 Let A be an algebra in Ω . Then w(A) = 0 if, and only if, A is a von
Neumann algebra with a faithful normal state.

Proof By Lemma 8, for any A, we have C - A. So A ∼ C if, and only if, A - C.
But this is equivalent to the existence of a faithful normal functional φ : A → C.
By a well known theorem of Kadison [17], the existence of a faithful normal state
on a monotone complete C∗-algebra implies that A is a von Neumann algebra.
Conversely, if A is a von Neumann algebra with a faithful normal state, then A - C.
ut

Corollary 5 Let A be a von Neumann algebra which is a small C∗-algebra. Then
w(A) = 0.

Proof When a von Neumann algebra A possesses a faithful state, then, by a well
known theorem of Takesaki ([33], see page 127 and 134), the state can be split into
the sum of a normal state and a completely singular state. Then this normal state is
always faithful. So w(A) = 0. Every unital small C∗-algebra has a unital bipositive
injection into L(H), where H is separable. Hence any small von Neumann algebra
A has a faithful state and hence a faithful normal state and hence w(A) = 0. ut

From the above we get:

Theorem 1 W is a partially ordered, abelian semigroup with zero. Each element
of W is idempotent. The natural partial ordering induced on W by - coincides
with the partial ordering defined by x≤ y if, and only if x+ y = y.

A join semilattice is a partially ordered set in which each pair of elements has
a least upper bound.

Corollary 6 W is a join semilattice with a least element 0.

Proposition 8 Let (An) (n = 1,2, . . . ) be a sequence of algebras in Ω . Let their
infinite direct sum be ⊕An. Then w(⊕An) is the least upper bound of the count-
able set {w(An) : n = 1,2, . . .}. In other words, in W each countable set has a
supremum.

Proof Let w(X) be an upper bound for {w(An) : n = 1,2, . . .}. Then for each n
there exists a faithful positive normal linear map φn from An into X . By multiplying
by a suitable constant, if necessary, we can suppose ||φn|| ≤ 1.

For each x ∈ ⊕An with x = (xn) (n = 1,2, . . . ), let Φ(x) = ∑
∞
n=1 2−nφn(xn).

Then Φ(x∗x) = 0 implies that φn(x∗nxn) = 0 which implies xn = 0, for all n. So Φ

is faithful.
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Let (xα) be a downward directed net with infimum 0 in⊕An where xα ≤ 1 for
all α . Choose ε > 0. Then for large enough N, and all α ,

0≤Φ(xα)≤
N

∑
n=1

2−n
φn(xα

n )+
∞

∑
n=N+1

2−n1 <
N

∑
n=1

2−n
φn(xα

n )+ ε1.

Hence
∧

α Φ(xα)≤∑
N
n=1 φn(xαn

n )+ε . Where α1,α2, . . . ,αN are arbitrary elements
of the index set for the net. Hence

∧
α Φ(xα)≤ ε1. Since ε was arbitrary it follows

that Φ is normal. So w(⊕An) ≤ w(X). It is easy to see that w(Aq) ≤ w(⊕An) for
each q. The result follows. ut

Lemma 9 Let φ : A → B be a positive linear map which is normal. Then there
exists a projection e∈ A such that φ vanishes on (1−e)A(1−e) and its restriction
to eAe is faithful.

Proof Let K be the hereditary cone {x ∈ A+ : φ(x) = 0}. Let K0 = {x ∈ K : ||x||<
1}. Then, see [23, page 11], K0 is an upward directed set. Let p be its supremum.
Since φ is normal, p ∈ K. Also, see [23, page 11 and page 15], K0 is an ap-
proximate unit for the hereditary subalgebra generated by K. From this it follows
that p is the unit for this subalgebra, in particular, p is a projection. Suppose that
z∈ (1− p)A(1− p) and φ(zz∗)= 0. Then zz∗ ∈K. So zz∗ = pzz∗ = p(1− p)zz∗ = 0.
Hence φ is faithful when restricted to (1− p)A(1− p).

On putting e = 1− p, the statement of the lemma follows. ut

We call e the support projection of φ .

Lemma 10 Let e be any projection in A. Then eAe⊕ (1− e)A(1− e)∼ A.

Proof If e = 0 or e = 1 then the statement is trivially true. So we suppose that
neither e nor 1−e is zero. Let φ : A→ eAe⊕(1−e)A(1−e) be defined by φ(x) =
exe⊕ (1− e)x(1− e). Then φ is positive, linear and normal.

Suppose φ(zz∗) = 0. Then ezz∗e = 0 and (1− e)zz∗(1− e) = 0. So ez = 0 and
(1− e)z = 0. Thus z = 0. So φ is faithful.

Hence w(A)≤ w(eAe⊕ (1− e)A(1− e)).
The natural embedding of eAe in A is an isomorphism onto a normal subalge-

bra. Hence w(eAe) ≤ w(A). Similarly w((1− e)A(1− e)) ≤ w(A). Since w(A)+
w(A) = w(A), we have w(eAe⊕(1−e)A(1−e))≤w(A). The result is proved. ut

The next result shows that the ordered semigroup W , has the Riesz Decom-
position Property. This will then imply that, regarded as a join semilattice, it is
distributive. This is useful because there is a well developed structure theory for
distributive join semilattices which can then be applied to W .

Theorem 2 Let a,b,c be elements of W such that a≤ b+c. Then a = a1 +a2 such
that 0≤ a1 ≤ b and 0≤ a2 ≤ c.

Proof Let a = w(A), b = w(B), and c = w(C). Then there exists a faithful normal
positive linear map φ : A→ B⊕C.

For each y in the algebra B and for each z in the algebra C, let π1(y⊕ z) =
y . Then π1 is the canonical projection from B⊕C onto the first component B.
Similarly, define π2 : B⊕C →C.
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Let φ j = π j ◦φ for j = 1,2. Then each φ j is positive, linear and normal. Also
φ(x) = φ1(x)⊕ φ2(x) for each x ∈ A. Suppose that φ1 = 0. Then a ≤ c. So, on
putting a = a2 and a1 = 0, we are done. Hence we shall now suppose that φ1 6= 0.
Then, by Lemma 9, it has a non-zero support projection e. Then φ1|eAe is a faithful
normal map into B. Also φ(1− e) = 0⊕φ2(1− e). If this vanishes then, since φ

is faithful, e = 1. So φ1 would be faithful on A, which implies a ≤ b. On putting
a = a1 and a2 = 0 we would be finished. We now suppose that φ(1− e) = 0⊕
φ2(1− e) 6= 0.

Since φ1 vanishes on (1− e)A(1− e), we have that 0⊕ φ2|(1− e)A(1− e) =
φ |(1− e)A(1− e) which is faithful.

Hence eAe - B and (1− e)A(1− e) - C. On putting a1 = w(eAe) and a2 =
w((1− e)A(1− e)), we find that 0≤ a1 ≤ b and 0≤ a2 ≤ c.

By appealing to Lemma 10 we have a1 +a2 = a. ut

Corollary 7 Regarded as a join semilattice, W is distributive.

When we interpret ‘+’ as the lattice operation ‘∨’ this is just a straightforward
translation of the statement of the theorem.

The well established theory of distributive join semi-lattices can now be ap-
plied to W . See [9]. Since we wish to keep this paper of reasonable length we shall
not pursue this here. But we remark that distributivity is a key property which, in
particular, leads to an elegant representation theory akin to the Stone representa-
tion for Boolean algebras.

The classification given here maps each small von Neumann algebra to the
zero of the semigroup. It could turn out that W is very small and fails to distinguish
between many algebras. We shall see later that this is far from true. Even when w
is restricted to special subclasses of algebras, we can show that its range in W is
huge, 2c, where c = 2ℵ0 . In the next section we shall introduce the spectroid of an
algebra and show that it is, in fact, an invariant for elements of W .

4 The spectroid and representing functions

Although our main interest is focused on monotone complete C∗- algebras, in this
section we shall also use the larger class of monotone σ -complete C∗-algebras.

For any non-empty set J we let F(J) be the collection of all finite subsets of
J, including the empty set. In particular we note that F(N), where N is the set of
natural numbers, is countable.

Definition 2 A representing function for a monotone σ -complete C∗-algebra, A,
is a function f : F(N)→ A+ such that

(i) f (k)≥ 0 and f (k) 6= 0 for all k.
(ii) f is downward directed, that is, when k, l are finite subsets of N, then

f (k∪ l)≤ f (k) and f (k∪ l)≤ f (l).
(iii)

∧
k∈F(N) f (k) = 0.

Let T be a set of cardinality 2ℵ0 = c. Let N : T →P(N) be an injection and
let N(t) be infinite for each t. We do not require that {N(t) : t ∈ T} contains every
infinite subset of N. We shall regard T and the function N as fixed until further
notice.



12 K. Saitô, J.D.M. Wright

Definition 3 Let A be a monotone σ -complete C∗-algebra and let f : F(N)→ A
be a representing function. Then let R(T,N)( f ) be the subset of T defined byt ∈ T :

∧
k∈F(N(t))

f (k) = 0

 .

The set R(T,N)( f ) is said to be represented by f in A, modulo (T,N).

Any subset of T which can be represented in A is said to be a representing set
of A (modulo (T,N)).

Definition 4 Let A be a monotone σ -complete C∗-algebra. Then the spectroid
of A (modulo (T,N)), written ∂(T,N)A, is the collection of all sets which can be
represented in A, modulo (T,N), by some representing function f : F(N)→ A+,
that is,

∂(T,N)A = {R(T,N)( f ) : f is a representing function for A}.

When it is clear from the context which (T,N) is being used, we shall some-
times write ∂A.

Let us recall that #S denotes the cardinality of a set S.

Proposition 9 Let (T,N) be fixed and let A be any monotone σ -complete C∗-
algebra of cardinality c. Then ∂(T,N)(A) is of cardinality not exceeding c.

Proof Each element of ∂(T,N)(A) arises from a representing function for A. But the
cardinality of all functions from F(N) into A is #AF(N) = cℵ0 = c. So #∂(T,N)(A)≤
c. ut

Corollary 8 Let (T,N) be fixed and let A be a small monotone complete C∗-
algebra. Then ∂(T,N)(A) is of cardinality not exceeding c.

Proof By Proposition 1, #A = c. ut

Lemma 11 Let (T,N)be fixed and let S be the set of all spectroids, modulo (T,N),
of monotone σ -complete C∗-algebras of cardinality c. Then #S ≤ 2c.

Proof Each subset of cardinality≤ c is the range of a function from R into P(T ).
So #S≤ #P(R)R ≤ #P(R×R) = 2c. ut

Suppose that A and B are monotone σ -complete C∗- algebras and φ : A → B
is a faithful positive linear map. Let us recall that φ is σ -normal if, whenever
(an) (n = 1,2, . . . ) is a monotone decreasing sequence in A with

∧
∞
n=1 an = 0 then∧

∞
n=1 φ(an) = 0.

Lemma 12 Let A and B be monotone σ -complete C∗-algebras. Let φ : A→ B be
a positive, faithful σ -normal linear map.

Let D be a downward directed subset of A+ which is countable. Then
∧
{d :

d ∈ D}= 0 if and only if
∧
{φ(d) : d ∈ D}= 0.
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Proof By Remark 1 there exists a monotone decreasing sequence (cn)
(n = 1,2, . . . ) in D such that d ∈ D implies d ≥ cn for some n. So

∧
{φ(d) : d ∈

D}=
∧

∞
n=1 φ(cn) = φ(

∧
∞
n=1 cn) = φ(

∧
{d : d ∈ D}).

Since φ is faithful, φ(
∧
{d : d ∈D}) = 0 if, and only if,

∧
{d : d ∈D}= 0. The

lemma follows. ut

Definition 5 Let A and B be monotone σ -complete C∗-algebras. If there exists
a positive, faithful σ -normal linear map φ : A → B we write A -σ B. Then the
relation -σ is a quasi ordering of the class of monotone σ -complete C∗-algebras.

When A -σ B and B -σ A we say that A and B are σ -normal equivalent and
write A∼σ B. This is an equivalence relation on the class of monotone σ -complete
C∗-algebras. Clearly, if A and B are monotone complete C∗-algebras and A - B
then A -σ B. So if A∼ B it follows that A∼σ B.

Proposition 10 Let (T,N) be fixed and let A and B be monotone σ -complete C∗-
algebras. Let A -σ B. Then ∂(T,N)(A)⊂ ∂(T,N)(B).

Proof Each element of ∂A is of the form R(T,N)( f ) where f is a representing
function for A. It is straightforward to verify that φ f is a representing function for
B. Since φ is faithful it follows from Lemma 5 that R(T,N)( f ) = R(T,N)(φ f ). Thus
∂A⊂ ∂B. ut

It is clear that the spectroid is an isomorphism invariant but from Proposition
10 it is also invariant under σ -normal equivalence.

Corollary 9 Let (T,N) be fixed and let A and B be monotone σ -complete C∗-
algebras. Let A∼σ B. Then ∂(T,N)(A) = ∂(T,N)(B).

Corollary 10 Let A and B be monotone complete C∗-algebras with w(A) = w(B).
Then ∂(T,N)(A) = ∂(T,N)(B) for any given (T,N).

So the spectroid is an invariant for the semigroup W and we may talk about
the spectroid of an element of the semigroup.

For the rest of this section we shall consider only monotone complete C∗-
algebras, although some of the results (and proofs) are still valid for monotone
σ -complete C∗-algebras. Let M be the class of all small monotone complete C∗-
algebras. We shall use W to denote the semigroup constructed in Section 3; but we
shall assume that w has been restricted to the class of all small monotone complete
C∗-algebras and, from now on, use W to denote the semigroup {w(A) : A ∈M }.
(So, in effect we are taking a sub semigroup of the one constructed in Section 3,
and abusing our notation by giving it the same name).

Theorem 3 Let (T,N) be fixed and consider only spectroids modulo (T,N). Let
{Aλ : λ ∈ Λ} be a collection of small monotone complete C∗-algebras such that
the union of their spectroids has cardinality 2c. Then there is a subcollection {Aλ :
λ ∈ Λ0} where Λ0 has cardinality 2c and ∂ (Aλ ) 6= ∂ (Aµ) whenever λ and µ are
distinct elements of Λ0.

Proof Let us define an equivalence relation on Λ by λ ≈ µ if, and only if, ∂ (Aλ ) =
∂ (Aµ). By using the Axiom of Choice we can pick one element from each equiv-
alence class to form Λ0. Clearly ∂ (Aλ ) 6= ∂ (Aµ) whenever λand µ are distinct
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elements of Λ0. Also ∪{∂ (Aλ ) : λ ∈Λ0} is equal to the union of all the spectroids
of the original collection. So

2c = #∪{∂ (Aλ ) : λ ∈Λ0}. (a)

By Corollary 8, #∂ (Aλ )≤ c for each λ ∈ Λ0. Hence, from (a), 2c ≤ c×#Λ0.
It follows that we cannot have #Λ0 ≤ c. So c× #Λ0 = #Λ0. So 2c ≤ #Λ0. From
Lemma 11 we get #Λ0 ≤ 2c. So #Λ0 = 2c. ut

Corollary 11 Given the hypotheses of the theorem, whenever λ and µ are distinct
elements of Λ0 then wAλ 6= wAµ . So Aλ is not equivalent to Aµ . In particular, they
cannot be isomorphic.

Proof Apply Corollary 10. ut

We have seen that the small monotone complete C∗-algebras can be classified
by elements of W and also by their spectroids. Since w maps every small von
Neumann algebra to the zero of the semigroup, this classification might be very
coarse, possibly W might be too small to distinguish between more than a few
classes of algebras. But we shall see in Section 8 that this is far from the truth. By
applying Theorem 3 for appropriate (T,N) we shall see that #W = 2c.

Representing sets for Boolean algebras appear in [21] and the generalisation of
representing functions from the context of Boolean algebras to that of monotone
complete algebras is given in [15]; the notion of spectroid appears to be new.

5 Commutative algebras: general preliminaries

We shall define a topological space to be separable if it has a countable dense
subset. This is a much weaker condition than the existence of a countable base.

Lemma 13 Let X be a compact Hausdorff space. Then C(X) is isomorphic to a
(unital) closed ∗-subalgebra of `∞ if, and only if, X is separable.

Proof First suppose that X has a countable dense subset {xn : n = 1,2, . . .}. Then,
for each f ∈ C(X), let H f be the sequence ( f (xn)) (n = 1,2, . . . ). Then H is an
(isometric) ∗-isomorphism of C(X) into `∞.

Conversely suppose that there exists an injective (unital) ∗-homomorphism H
from C(X) into `∞. Then, by the Gelfand-Naimark duality between compact Haus-
dorff spaces and commutative unital C∗-algebras, there is a surjective continuous
map from the structure space of `∞onto X . But the structure space of `∞is βN, the
Stone-Cech compactification of the natural numbers. Since βN is separable, so,
also is X . ut

The regular σ -completion of an arbitrary C∗-algebra was defined in [38] but
for a commutative unital C∗-algebra, C(X), it can be identified with B∞(X)/M(X),
(which we shall denote here by Ĉ(X) where B∞(X) is the algebra of all bounded
Baire measurable functions on X and M(X) is the ideal of all f for which {x ∈
X : f (x) 6= 0} is a meagre subset of X , that is, the union of countably many
nowhere dense sets. Clearly there is a natural injection of C(X) into Ĉ(X), which
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we shall denote by j. Since `∞ is monotone complete, it follows from [35] that
if there exists an injective ∗-isomorphism h of C(X) into `∞, then it extends to
a ∗-homomorphism H of Ĉ(X) into `∞. From standard properties of regular σ -
completions [38], H is also an injection into `∞. So the monotone σ -complete
algebra Ĉ(X) supports a faithful state and so is monotone complete. Let X̂ be the
Gelfand-Naimark structure space of Ĉ(X), so that Ĉ(X) is isomorphic to C(X̂).
Then X̂ is compact and extremally disconnected; by the lemma above, it is also
separable.

We recall the familiar fact that the Cantor “middle third” set is homeomorphic
to {0,1}N, which we shall also denote by 2N, and call the Cantor space. It is a
compact (Hausdorff) totally disconnected space whose set of clopen subsets is
countable. We shall also make use of the space {0,1}R, which we shall denote
by 2R; we shall sometimes refer to this space as the Big Cantor space. It is a
moderately surprising fact that the Big Cantor space is separable. This follows
from a theorem of Hewitt [16].

We shall adopt the following notation. For any unital C∗-algebra A,we denote
the lattice of projections in the algebra by Pro j(A). Whenever T is a compact
Hausdorff totally disconnected space we shall use K (T ) for the Boolean algebra
of all clopen subsets of T ; then K (T ) is isomorphic to Pro j(C(T )).

Lemma 14 Each closed subspace of 2R is compact, totally disconnected and has
a base of c open sets. Conversely, each compact Hausdorff, totally disconnected
space with a base of c open sets is homeomorphic to a closed subspace of 2R.

Proof Since 2R is totally disconnected and compact, each closed subspace S is
compact. Given distinct points x,y in S, there exist disjoint clopen subsets of 2R,
E,F such that x∈ E and y∈ F . Then E∩S and F∩S are disjoint clopen subsets of
S in the relative topology. So S is totally disconnected. Since c clopen sets form a
base for the topology of 2R, their intersections with S form a base for the relative
topology.

Now suppose that T is a compact Hausdorff, totally disconnected space with
a base of c open sets. Since each clopen set is compact, it is the union of finitely
many open sets from the base. So #K (T )≤ c.

Since, see Halmos [10], 2Ris the Stone structure space of the free Boolean
algebra on c generators, there is a Boolean homomorphism ρ from K (2R) onto
K (T ). By the Stone duality between Boolean algebras and compact Hausdorff
totally disconnected spaces, there is an injective continuous map ρ∗ from T into
2R. Because T is compact and 2R is Hausdorff, ρ∗ is a homeomorphism. ut

Corollary 12 Let T be a separable, totally disconnected compact Hausdorff spa-
ce then T is homeomorphic to a closed subspace of 2R.

Proof By Lemma 13, C(T ) has an injection into `∞. So #C(T ) ≤ #`∞ = c. It fol-
lows that #K (T ) = #Pr(C(T )) ≤ #C(T ) ≤ c. So the clopen subsets of T form a
base of at most c generators. ut

Corollary 13 Let B be a unital commutative monotone σ -complete C∗-algebra of
cardinality c. Let E be its Gelfand-Naimark structure space. Then E is homeomor-
phic to a closed subspace of 2R.
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Proof Since the algebra is monotone σ -complete, E is totally disconnected, in
fact, basically disconnected. Then #K (E) ≤ #C(E) = c. So, by Lemma 14, E is
homeomorphic to a closed subspace of the Big Cantor space. ut

Corollary 14 Let B be a small commutative monotone complete C∗-algebra. Let
E be its Gelfand-Naimark structure space. Then E is homeomorphic to a closed
subspace of 2R.

Proof Since the algebra is small its cardinality is c. So the result follows immedi-
ately from the preceding corollary. ut

We see from the above discussion that to construct a monotone complete C∗-
algebra which can be embedded as a closed ∗-subalgebra of `∞, we can proceed
as follows: Take a countable subset of the Big Cantor space. Then its closure is
a separable compact totally disconnected space, K, say. Then B∞(K)/M(K), the
regular σ -completion of C(K), is also embeddable as a subalgebra of `∞; so it
supports a faithful state and hence is monotone complete. Conversely every com-
mutative monotone complete C∗-algebra which can be embedded in `∞, arises in
this way. In the next section, by taking carefully chosen countable subsets of the
Big Cantor space and applying the process outlined here, we will modify the ap-
proaches of Monk-Solovay [21] and of Hamana [15] to show the existence of huge
numbers of commutative subalgebras which are monotone complete and mutually
non-equivalent. We will also show that each of the subalgebras of `∞ we construct
has a natural representation in the form B∞(2N)/J, where J is a σ -ideal of B∞(2N)
and J does not contain any non-zero continuous function. Before carrying out this
programme we shall gather together a few more generalities.

For any topological space E we let Top(E) be the collection of all open subsets
of E. When Y is a subset of E we denote its closure by clE and its interior by intE.
Then we recall that an open set U is said to be a regular open set if U = int(clU).
Let Rg(E) be the collection of all regular open subsets of E.

Let X be any infinite countable subset of 2R and let its closure be K. Then K
is compact Hausdorff and totally disconnected. Clearly K is separable and hence,
see above, K̂ is also separable. Here K̂ is the compact extremally disconnected
structure space of B∞(K)/M(K).

By elementary Boolean algebra theory, see [10], the Dedekind completion of
the Boolean algebra K (K) can be identified with Rg(K), which, in turn, is iso-
morphic to the Boolean algebra of projections in B∞(K)/M(K). Furthermore, each
non empty U ∈ Rg(K) contains a non empty clopen subset of K. It follows easily
from this that Rg(K) has an atom if, and only if, K has an isolated point.

Proposition 11 Let X ,K be as above. Suppose that no point of X is an isolated
point of K. Then the commutative monotone complete C∗-algebra C(K̂) does not
possess any normal states.

Proof By the remarks above, the Boolean algebra of projections in C(K̂) contains
an atom, if and only if, K contains an isolated point {y}.

Since X is dense in K, when {y} is an isolated point of K then y ∈ X . So our
assumption implies that C(K̂) is non atomic; hence K̂ does not have any isolated
points.
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By Lemma 13 the compact extremally disconnected space K̂ has a countable
dense subset D. Because none of the points of D is isolated, D is a meagre subset of
K̂. By an argument of Dixmier [5] this implies that there are no non-zero positive
normal functionals on C(K̂). ut

Let A be a monotone complete C∗-algebra. Let us recall that by a theorem of
Kadison [17], A is a von Neumann algebra if, and only if, it has a separating family
of normal states. When A does not possess any normal states it is said to be wild.

The following lemma is well known but as we shall make repeated use of it in
the next section we include a brief argument for the convenience of the reader.

Lemma 15 Let X ,K be as above. Let U ∈ TopK then clU = cl(U ∩X). In partic-
ular, when U is a clopen set, U = cl(U ∩X).

Proof Let y ∈ clU . So given any open set V with y ∈V we must have V ∩U 6= ∅ .
Since X is dense in K, (V ∩U)∩X 6= ∅. So V ∩ (U ∩X) 6= ∅. Thus y ∈ cl(U ∩X).
The reverse inclusion is trivial. ut

We shall need the following corollary in the next section.

Corollary 15 Let L∩X = M∩F ∩X, where L,M are clopen subsets of K and F
is a closed subset of K. Then L = M∩ intF.

Proof Applying the preceding lemma, L = cl(L∩X) ⊂ cl(F ∩X) ⊂ F . So L ⊂
intF .

Again, by the lemma, L∩X ⊂M∩X implies L⊂M. Thus L⊂M∩ intF .
But (M∩ intF)∩X ⊂M∩F∩X = L∩X . By applying the lemma again, cl(M∩

intF)⊂ L. Hence L = M∩ intF . ut

6 Constructing commutative examples

As before, we use the notation F(S) to denote the collection of all finite subsets
(including the empty set) of a set S.

Constructing commutative monotone complete C∗-algebras is equivalent to
constructing complete Boolean algebras. It was not clear from the original con-
structions of Monk-Solovay [21] that their examples could support free ergodic
group actions, a very important point for the non-commutative theory. Hamana
[15] produced elegant constructions which did support Z-actions. In Sections 6
and 7 we have modified his approach by using the Big Cantor Space. He starts
with a countable set and equips it with an exotic topology (he also deals with
higher cardinalities, but we stick to what is relevant to this paper). Instead we start
with a countable subset of the Big Cantor Space and take its closure. It is then im-
mediate that this closure is a compact Hausdorff space, totally disconnected and
with a countable dense set. Our constructions in Sections 6 and 7 make fundamen-
tal use of those of Hamana, our indebtedness to him is obvious, but we believe our
approach is slightly more transparent and easier for the reader. We are also able to
show that the algebras we construct are quotients of the bounded Borel functions
on 2N by σ -ideals. We can find 2c inequivalent algebras, such that every infinite
countable group G has a free ergodic action, on each algebra, by an action which
permutes the indexes of 2N, see Theorem 5.
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Definition 6 A pair (T,O) is said to be feasible if it satisfies the following condi-
tions:

(i) T is a set of cardinality c = 2ℵ0 ; O = (On) (n = 1,2, . . . ) is an infinite
sequence of non-empty subsets of T , with Om 6= On whenever m 6= n.

(ii) Let M be a finite subset of T and t ∈ T\M. For each natural number m
there exists n > m such that t ∈ On and On∩M = ∅.

In other words {n ∈ N : t ∈ On and On∩M = ∅} is an infinite set.

An example satisfying these conditions can be obtained by putting T = 2N,
the Cantor space and letting O be an enumeration (without repetitions) of the
(countable) collection of all non-empty clopen subsets.

For the rest of this section (T,O) will be a fixed but arbitrary feasible pair.

Definition 7 Let (T,O) be a feasible pair and let R be a subset of T . Then R is
said to be admissible if

(i) R is a subset of T , with #R = #(T\R) = c.
(ii) On is not a subset of R for any natural number n.

Return to the example where T is the Cantor space and O an enumeration of
the non-empty clopen subsets. Then, whenever R ⊂ 2N is nowhere dense and of
cardinality c, R is admissible.

Lemma 16 Let (T,O) be any feasible pair and let R be an admissible subset of
T . Then there are 2c subsets of R which are admissible.

Proof Let S⊂ R where #S = c. Then S is admissible. ut

Throughout this section the feasible pair is kept fixed and the existence of at
least one admissible set is assumed. For the moment, R is a fixed admissible subset
of T . Later on we shall vary R.

Since F(N)×F(T ) has cardinality c, we can identify the Big Cantor space
with 2F(N)×F(T ). For each k ∈ F(N), let fk ∈ 2F(N)×F(T ) be the characteristic func-
tion of the set

{(l,L) : L ∈ F(T\R), l ⊂ k and On∩L = ∅ whenever n ∈ k and n /∈ l}.

Let XR be the countable set { fk : k ∈ F(N)}. Let KR be the closure of XR in
the Big Cantor space. Then KR is a (separable) compact Hausdorff totally discon-
nected space with respect to the relative topology induced by the product topology
of the Big Cantor space. Let AR = B∞(KR)/M(KR), the regular σ - completion of
C(KR). By the discussion in the previous section, AR is monotone complete and is
a (unital) C∗-subalgebra of `∞. Furthermore, the only way it could fail to be wild,
is if one of the points in XR were an isolated point in KR. We shall show that this
does not happen; so that the algebra must be wild.

The projections in AR form a complete Boolean algebra which satisfies the
countable chain condition (because it embeds in `∞ which supports a faithful state)
and which is Boolean isomorphic to Rg(KR), the Boolean algebra of regular open
subsets of KR.

For each (k,K) ∈ F(N)×F(T ) let E(k,K) = {x ∈ KR : x(k,K) = 1}. The defi-
nition of the product topology of the Big Cantor space implies that E(k,K) and its
compliment Ec

(k,K) are clopen subsets of KR. It also follows from the definition of
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the product topology that finite intersections of such clopen sets form a base for
the topology of KR. Hence their intersections with XR give a base for the relative
topology of XR. We shall see that, in fact, {E(k,K)∩XR : k ∈ F(N),K ∈ F(T\R)} is
a base for the topology of XR. To establish this we first need to prove some prelim-
inary technical results. We shall then show that Rg(KR) is generated as a Boolean
σ -algebra by the countable set {E({n},∅) : n∈N}. Using this we shall find a natural
representation of AR in the form B∞(2N)/JR where JR is a σ -ideal of the bounded
Baire measurable functions on the Cantor space with C(2N)∩ JR = {0}.

Lemma 17 E(k,K) = ∅ unless K ⊂ T\R.

Proof Suppose K is not a subset of T\R. Then, for any h ∈ F(N), it follows from
the definition of fh, that fh(k,K) = 0. So XR ⊂ Ec

(k,K). Then by Lemma 15, KR =
clXR = Ec

(k,K). Thus E(k,K) = ∅. ut

Lemma 18 Let x∈ XR and (k,K)∈ F(N)×F(T ). Let x∈ Ec
(k,K). Then there exists

(l,L) ∈ F(N)×F(T\R) such that x ∈ E(l,L) ⊂ Ec
(k,K).

Proof First suppose that K∩R 6= ∅. Then by the preceding lemma KR = Ec
(k,K).

For any h ∈ F(N), fh ∈ E(h,∅). But E(h,∅) ⊂ KR = Ec
(k,K). So we may now

assume that K∩R = ∅.
Let x = fh. Then fh ∈ Ec

(k,K) ⇐⇒ not(k ⊂ h &(∀n(n ∈ h\k =⇒ On∩K = ∅))
⇔ k\h 6= ∅ or ∃n1 ∈ h\k such that On1 ∩K 6= ∅.

(1) First let us deal with the situation where k\h 6= ∅. Then there exists n0 ∈
k\h. Since R is admissible, we can find t0 ∈ T\R such that t0 ∈ On0 . Then it is
straight forward to verify that fh ∈ E(h,{t0}). It remains to show that E(h,{t0}) ∩
E(k,K) = ∅. Suppose that this is false. Then we can find fg ∈ E(h,{t0})∩E(k,K). So
h⊂ g and k ⊂ g. Thus n0 ∈ g\h. Then fg ∈ E(h,{t0}) implies t0 /∈ On0 . But this is a
contradiction. So

fh ∈ E(h,{t0}) ⊂ Ec
(k,K).

(2) Now consider the case where ∃n1 ∈ h\k such that On1 ∩K 6= ∅. Consider
E({n1},∅). It is clear that fh is an element of this set. We now wish to show that
E({n1},∅) ∩E(k,K) = ∅. Suppose this is false. Then we can find fg ∈ E({n1},∅) ∩
E(k,K). Then n1 ∈ g\k. So On1 ∩K = ∅. This is a contradiction. So fh ∈ E({n1},∅) ⊂
Ec

(k,K). ut

Lemma 19 Let (l,L) and (k,K) be any elements of F(N)×F(T\R) such that
E(l,L)∩E(k,K) 6= ∅. Then

E(l,L)∩E(k,K) = E(l∪k,L∪K).

Proof Since E(l,L)∩E(k,K) is not empty and XR is dense in KR, E(l,L)∩E(k,K)∩XR
is not empty. Let fh ∈ E(l,L)∩E(k,K)∩XR. Then l ⊂ h and k⊂ h. So l∪k⊂ h. Also

On∩L = ∅ for all n ∈ h\l and On∩K = ∅ for all n ∈ h\k. (#)

Since k\l ⊂ h\l and l\k ⊂ h\k we have

On∩L = ∅ for all n ∈ (l∪ k)\l and On∩K = ∅ for all n ∈ (l∪ k)\k. (##)
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From (#) we have On∩(L∪K) = ∅ whenever n∈ h\(l∪k). So fh ∈E(l∪k,L∪K).
Thus (E(l,L)∩E(k,K)∩XR)⊂ E(l∪k,L∪K)∩XR. Hence E(l,L)∩E(k,K) ⊂ E(l∪k,L∪K).

By the above, E(l∪k,L∪K) is not empty. So E(l∪k,L∪K)∩XR is not empty. Let fg ∈
E(l∪k,L∪K). Then l∪ k ⊂ g. Also, for all n ∈ g\(l∪ k), we have On∩ (L∪K) = ∅.
By (##) we also have On ∩L = ∅ for n ∈ (l ∪ k)\l. Hence fg ∈ E(l,L). Similarly
fg ∈ E(k,K).

It now follows that E(l∪k,L∪K)∩XR is a subset of E(l,L)∩E(k,K). Taking closures
and applying Lemma 15, gives E(l,L)∩E(k,K) = E(l∪k,L∪K). ut

Lemma 20 Let U be an open subset of KR and x ∈ U ∩ XR. Then there exists
(k,K) ∈ F(N)×F(T\R) such that

x ∈ E(k,K) ⊂U.

Proof It follows from the definition of the product topology on the Big Cantor
space and Lemma 18, that x ∈ ∩q

j=1E(h( j),H( j)) ⊂U where (h( j),H( j)) ∈ F(N)×
F(T\R) for j = 1,2, . . . ,q.

Let k = ∪q
j=1h( j) and let K = ∪q

j=1H( j). Then, by repeated applications of
Lem-ma 19, we have x ∈ E(k,K) ⊂U . ut

Corollary 16 Let U be a non-empty regular open subset of KR. Then there exists a
sequence (k( j),K( j)) ( j = 1,2, . . . ) in F(N)×F(T\R) such that, in the complete
Boolean algebra of regular open subsets of KR,

U =
∞∨

j=1

E(k( j),K( j)).

Proof Since XR∩U is a countable set it can be enumerated by (x j) ( j = 1,2, . . . ).
By Lemma 20, for each j, we can find (k( j),K( j)) in F(N)×F(T\R) such that
x j ∈ E(k( j),K( j)) ⊂U . So XR ∩U ⊂ ∪∞

j=1E(k( j),K( j)) ⊂U . On taking closures, we
get clU ⊂ cl∪∞

j=1 E(k( j),K( j)) ⊂ clU .
Because U is a regular open set, U = int(clU). We recall that the supremum.

of a sequence of regular open sets in Rg(KR) is formed by taking the closure of
their union, and then taking the interior of that set. So U =

∨
∞
j=1 E(k( j),K( j)). ut

The following technical lemma will not be needed until the next section but it
seems natural to prove it in this section.

Lemma 21 Let (l,L) and (k,K) be in F(N)×F(T\R). Let E(l,L) = E(k,K). Then
l = k and L = K.

Proof For h∈F(N), fh ∈E(l,L)⇐⇒ l ⊂ h, and whenever n∈ h\l then On∩L = ∅.
It follows that fl ∈ E(l,L) and so fl ∈ E(k,K). Thus k⊂ l. Similarly we can show

that l ⊂ k. So l = k.
Suppose that L is not a subset of K. Then there exists t ∈ L\K. Then, by fea-

sibility, there exists m such that m /∈ k, t ∈ Om and Om∩K = ∅. Let h = k∪{m}.
Hence fh ∈ E(k,K). So then fh ∈ E(k,L). So Om∩L = ∅. But t ∈ Om∩L. This con-
tradiction shows that L⊂ K.

Similarly K ⊂ L. ut
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Corollary 17 Let (l,L) and (k,K) be in F(N)×F(T\R). If E(l,L) ⊂ E(k,K) then
k ⊂ l and K ⊂ L.

Conversely, if k⊂ l and K ⊂ L then either E(l,L)∩E(k,K) = ∅ or E(l,L) ⊂ E(k,K).

Proof First suppose E(l,L) ⊂ E(k,K). Then E(l,L) = E(l,L)∩E(k,K). Since fl(l,L) = 1
this intersection is not empty. So, by Lemma 19, E(l,L) = E(l∪k,L∪K). By Lemma
21, l = l∪ k and L = L∪K. i.e. k ⊂ l and K ⊂ L.

Conversely, let k ⊂ l and K ⊂ L. By Lemma 19, either E(l,L) ∩E(k,K) = ∅ or
E(l,L)∩E(k,K) = E(l∪k,L∪K) = E(l,L). ut

Proposition 12 AR = B∞(KR)/M(KR) = C(K̂R) is wild and non-atomic.

Proof It follows from the work of the preceding Section that it suffices to show
that none of the elements of XR is an isolated point in KR.

Suppose this is false and fg is an isolated point. Then, by Lemma 20, for some
k ∈ F(N) and K ∈ F(T\R), E(k,K) = { fg}.

Since K is a finite set and T\R is infinite, we can find t0 ∈ (T\R)\K. It now
follows from the definition of feasibility that we can find n0 /∈ g such that t0 ∈On0
and On0 ∩K = ∅. Let h = g∪{n0}. Then k ⊂ h and, for n ∈ h\k,On∩K = ∅. So
fh ∈ E(k,K). Hence fh = fg. But fg({n0}∪ k,K) = 0 whereas fh({n0}∪ k,K) = 1.
This is a contradiction. So the proposition is proved. ut

Lemma 22 For each k ∈ F(N) and t ∈ T\R we have

E(k,{t}) =
⋂
n∈k

E({n},∅)∩ int

 ⋂
n/∈k,t∈On

(KR\E({n},∅))

 .

Proof By the last corollary in preceding section, it suffices to prove that

XR∩E(k,{t}) = XR∩
⋂
n∈k

E({n},∅)∩
⋂

n/∈k,t∈On

(KR\E({n},∅)). (#)

Let fg ∈ XR∩E(k,{t}). So fg(k,{t}) = 1. Thus

k ⊂ g (a)

and
for every n ∈ g\k we have t /∈ On. (b)

So, by (a), fg({n},∅) = 1 for each n ∈ k. Thus fg ∈ E({n},∅) for every n ∈ k.
Now consider n /∈ k. If n ∈ g then n ∈ g\k. So On ∩{t} = ∅. Hence if n /∈ k

and t ∈ On then n /∈ g. So fg({n},∅) = 0. Thus fg ∈ KR\E({n},∅). It now follows
that fg is an element of the right hand side of (#).

Conversely, let us take fh to be an element of the right hand side of (#). Then
fh({n},∅) = 1 for each n ∈ k. So k ⊂ h. Now fix n ∈ h\k.

Then fh({n},∅) = 1. If t ∈ On then fh ∈ (XR\E({n},∅)) which would imply
fh({n},∅) = 0. Hence t /∈ On. It follows that fh(k,{t}) = 1. So the equality (#) is
established. ut
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Proposition 13 Rg(KR), the complete Boolean algebra of regular open subsets of
KR, is the smallest σ -complete subalgebra of itself which contains the countable
set {E({n},∅) : n = 1,2, . . .}.

Proof Let S be the σ -subalgebra of Rg(KR) generated by {E({n},∅) :
n = 1,2, . . .}. Fix k ∈ F(N)\{∅} and consider E(k,∅). Then fk ∈ E({n},∅) for each
n ∈ k. So, by Lemma 19, E(k,∅) = ∩n∈kE({n},∅). Hence E(k,∅) ∈ S . We observe
that E(∅,∅)∩XR = { fg : g ∈ F(N)}= XR. So E(∅,∅) = KR.

We now consider E(k,K) where K 6= ∅. If E(k,K) 6= ∅ then K ⊂ T\R. So K =
{t1, t2, . . . , tn} where each t j is in T\R.

By Lemma 22, E(k,{t}) ∈S for each k ∈ F(N) and t ∈ T\R. Also fk ∈ E(k,{t}).
It now follows from Lemma 19 that E(k,K) ∈S . We can now apply Corollary 16
to deduce that Rg(KR)⊂S . ut

Corollary 18 Let qR be the canonical quotient homomorphism of B∞(KR) onto
B∞(KR)/M(KR). Let B be a Boolean σ -subalgebra of the Baire subsets of KR such
that E({n},∅) ∈ B for each n∈N. Then {qR(χS) : S ∈ B} is the set of all projections
in B∞(KR)/M(KR).

Proof This follows from Proposition 13 and the observation that the map O −→
qR(χO) is a Boolean isomorphism from Rg(KR) onto the Boolean algebra of all
projections in B∞(KR)/M(KR). ut

Definition 8 Let
N : T 7−→P(N)

be the map defined by
N(t) = {n ∈ N : t ∈ On}

for each t ∈ T .

We remark that the definition of feasibility implies that N(t) is an infinite set
for every t ∈ T . Feasibility also implies that it is an injective map. Its definition is
independent of any choice of R.

Proposition 14 For each t ∈ T let C(t) be the closed set defined by

C(t) =
⋂

n∈N(t)

(KR\E({n},∅)).

Then C(t) has empty interior if, and only if, t ∈ R.

Proof We recall that fg({n},∅) = 0 if, and only if, n /∈ g. So fg ∈C(t) if, and only
if, g∩N(t) = ∅.

First assume that t ∈ T\R. Then fh ∈ E(∅,{t}) ⇐⇒ (n ∈ h implies t /∈On)⇐⇒
h∩N(t) = ∅⇐⇒ fh ∈C(t). Thus f∅ ∈ E(∅,{t})∩XR = C(t)∩XR. So C(t) is non-
empty and, by applying Lemma 15, is equal to the clopen set E(∅,{t}).

Conversely, let us assume that C(t) has non-empty interior. So there exists
(k,K) ∈ F(N)×F(T\R) such that ∅ 6= E(k,K) ⊂C(t).

First suppose that t /∈ K. Since (T,O) is feasible we can find n /∈ k such that
t ∈On and On∩K = ∅. Let h = {n}∪k. Then it follows from this that fh ∈ E(k,K).
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So fh ∈C(t). Thus h∩N(t) = ∅. In particular, t /∈ On. This contradiction shows
that we must have t ∈ K ⊂ T\R.

So C(t) has non-empty interior if, and only if, t ∈ T\R. The required result
follows. ut

We shall now see how to represent AR = B∞(KR)/M(KR) = C(X̂) as a quotient
of the algebra of Baire functions on the (classical) Cantor space. The key fact
which makes this possible is the existence of a countable set of generators.

Let Γ be a map from the Big Cantor space onto the small Cantor space, defined
as follows.

For x∈ 2F(N)×F(T ) let Γ (x)(n) = x(({n},∅)) for n = 1,2, . . . . Then Γ is a map
from the Big Cantor space into 2N, the classical Cantor space.

Let J = {({n},∅) : n ∈ N}. Then, trivially, we may identify 2N with 2J . So
Γ may be regarded as a restriction map and, by the definition of the topology for
product spaces, it is continuous.

Let Σ = {y ∈ 2N : y(n) = 0 for all but finitely many n}. Then Σ is a countable
dense subset of 2N such that Γ [XR] = Σ . Let ΓR be the restriction of Γ to KR.
Then ΓRis a continuous map from the compact Hausdorff space KR onto a compact
Hausdorff space. Since XR is dense in KR, it follows that ΓR[KR] = 2N. This map
ΓRis never an open map, see the remarks at the end of this section.

Let En = {y ∈ 2N : y(n) = 1}. Then Γ
−1

R [En] = E({n},∅) for n = 1,2, . . . .
Since ΓR is continuous, it follows that whenever f ∈ B∞(2N) then f ◦ΓR is in

B∞(KR). We define a σ -homomorphism γR from B∞(2N) to B∞(KR) by γR( f ) =
f ◦ΓR. As in Corollary 18, we let qR be the canonical quotient homomorphism of
B∞(KR) onto B∞(KR)/M(KR).

Definition 9 Let IR = { f ∈ B∞(2N) : f ◦ΓR ∈M(KR)}.

Theorem 4 IR is a σ -ideal of B∞(2N) and B∞(2N)/IR is isomorphic to
B∞(KR)/M(KR)≈C(K̂R) = AR. Also IR∩C(2N) = {0}.

Proof The mapping qR ◦ γR is a σ -homomorphism, so its kernel is a σ -ideal. But

qR ◦ γR( f ) = 0⇐⇒ γR( f ) ∈M(KR)⇐⇒ f ◦ΓR ∈M(KR)⇐⇒ f ∈ IR.

Thus IR is a σ -ideal and B∞(2N)/IR is isomorphic to qR ◦ γR[B∞(2N)] ⊂
B∞(KR)/M(KR).

We observe that γR maps the characteristic function of En to the characteristic
function of E({n},∅). It now follows from Corollary 18 that the range of qR ◦ γR
contains every projection in B∞(KR)/M(KR). Since the range of qR ◦γR is a closed
subalgebra of B∞(KR)/M(KR) it must coincide with B∞(KR)/M(KR).

Finally, if f ∈ IR ∩C(2N), then f ◦ΓR is a continuous function in M(KR). So
{y∈KR : f ◦ΓR(y) 6= 0} is an open meagre set. So, by the Baire Category Theorem
for compact Hausdorff spaces, this set is empty i.e. f = 0. This completes the
proof. ut

We denote the natural quotient homomorphism from B∞(2N) to B∞(2N)/IR by
πR.

To avoid “subscripts of subscripts” we shall denote the characteristic function
of a set S by χ(S).
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We now let Dn = 2N\En. So γR maps χ(Dn) to χ(Ec
({n},∅)). For each k ∈

F(N)\{∅} let dk = χ(∩n∈kEc
({n},∅)). Then γR maps χ(∩n∈kDn) to dk.

Because γR is a σ -homomorphism, it maps χ(∩n∈N(t)Dn) to χ(C(t)). Then, by
Proposition 14, χ(C(t))∈M(KR) if and only if t ∈ R. So χ(∩n∈N(t)Dn)∈ IR if and
only if t ∈ R.

Proposition 15 When R 6= S then IR 6= IS.

Proof Without loss of generality, we may suppose that there exists t ∈ R\S. Then
χ(∩n∈N(t)Dn) ∈ IR but χ(∩n∈N(t)Dn) /∈ IS. So IR 6= IS. ut

Corollary 19 There are 2c distinct ideals IR.

Proof By Lemma 16 there are 2c admissible sets. ut

Remark 5 When R 6= S then IR 6= IS. But it does not necessarily follow that
B∞(2N)/IR is not isomorphic to B∞(2N)/IS. To show that there are 2c algebras AR
which are not equivalent and hence, in particular, not isomorphic, we make use of
the machinery of representing functions and spectroids, modulo (T,N), where N
is the map defined in Definition 8.

We define a particular representing function for B∞(2N)/IR by defining
fR(k) = πR(χ(∩n∈kDn)) for k 6= ∅, and putting fR(∅) = 1.

Then we have:

Lemma 23 For each admissible R the function fR is a representing function for
B∞(2N)/IR. Then R is represented by fR, modulo (T,N). In other words, R ∈
∂(T,N)(B∞(2N)/IR).

Proof First we note that ∩n∈kDn is a non-empty clopen set for each finite set k.
So χ(∩n∈kDn) is a non-zero continuous function. Hence it is not in IR. It is clear
that fR is downward directed. Now consider

∧
k∈F(N) fR(k) = πR(χ(∩∞

n=1Dn)). But
∩∞

n=1Dn is a single point set. So πR(χ(∩∞
n=1Dn)) is zero or an atomic projection.

Since B∞(2N)/IR ≈ AR which has no atoms,
∧

k∈F(N) fR(k) = 0. Thus fR is a rep-
resenting function.

We now calculate R(T,N)( fR) = {t ∈ T :
∧

k∈F(N(t)) fR(k) = 0}. We have∧
k∈F(N(t)) fR(k) = 0 precisely when χ(∩n∈N(t)Dn) ∈ IR.

In the notation of Proposition 14, ∩n∈N(t)Dn = C(t). So, by applying Proposi-
tion 14, we see that χ(C(t)) ∈ IR precisely when t ∈ R. Thus R = R(T,N)( fR).

So R is in ∂(T,N)(B∞(2N)/IR) = ∂(T,N)(AR). ut

Corollary 20 Let R be the collection of all admissible subsets of T . Then there
exists R0 ⊂R, with #R0 = 2c and such that {AR : R ∈R0} is a set for which AR
is not equivalent to AS unless R = S. Also the spectroid of AR, modulo (T,N), is
not equal to the spectroid of AS, modulo (T,N), when R 6= S.

Proof By Lemma 16 #R = 2c. From Lemma 23, for each R ∈R,R ∈ ∂(T,N)(AR).
The result now follows from Theorem 3 and Corollary 10. ut
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Remark 6 We can prove that none of the algebras constructed above is isomorphic
to the Dixmier algebra. If, for a given R, the continuous map ΓR were open then it
is easy to see that B∞(2N)/IR would be isomorphic to the Dixmier algebra. So ΓR
is never open.

In the construction of commutative monotone complete algebras described in
this section we have assumed that #(T\R), the cardinality of the compliment of the
admissible set used, is 2c. If we replaced this assumption by requiring #(T\R) =
ℵ0, then the constructions would still work but we can show that the algebras
obtained would all be isomorphic to the Dixmier algebra.

7 Group actions

One of the motives for studying group actions on commutative monotone com-
plete C∗-algebras, is that, when the actions are free and ergodic, they give rise to
constructions of monotone complete factors [14], [15], [25], [31], [32]. Each of
these factors contains a maximal abelian subalgebra which is isomorphic to the
initial commutative algebra. The spectroid of such a factor contains the spectroid
of the commutative subalgebra.

Let X be any compact Hausdorff space. Let G be a countably infinite discrete
group. Let g → αg be an action of G on X as homeomorphisms. (Equivalently
g→ αg−1 is an anti-action). Then f → f ◦αg−1 is an action of G on C(X).

For any Borel (Baire) function f on X , f ◦αg is another Borel (Baire) function
on X . Since homeomorphisms map meagre sets to meagre sets, f ∈ M(X) if and
only if f ◦αg ∈ M(X). Let q be the canonical quotient homomorphism of B∞(X)
onto B∞(X)/M(X). Then, for each g ∈ G and each f ∈ B∞(X), we can define
αg(q( f )) = q( f ◦αg−1). So the action α induces an action α , as ∗-automorphisms,
on B∞(X)/M(X).

The following lemma is elementary but, since we shall make essential use of
it, we give a proof.

Lemma 24 Let X be any topological space and let Λ be an index set. Let ψ

be a bijection of Λ onto Λ . Let Ψ(x) = x ◦ψ for each x in XΛ . Then Ψ is a
homeomorphism of XΛ onto itself when XΛ is equipped with the product topology.

Proof For each λ ∈ Λ and each open set V ⊂ X , let E(λ ,V ) be the set of all x ∈
XΛ such that x(λ ) ∈V .

Now y ∈Ψ−1[E(λ ,V )] if, and only if, y◦ψ(λ ) ∈V that is y ∈ E(ψ(λ ),V ). But fi-
nite intersections of sets of the form E(λ ,V ) form a sub-base for the product topol-
ogy. Hence Ψ is continuous. Applying the same arguments to ψ−1 shows that
Ψ−1is also continuous i.e. Ψ is a homeomorphism. ut

Let us now consider one of the algebras constructed in the previous section:
B∞(2N)/IR. Let ψ be any permutation of N. Then this induces a bijection Ψ of 2N

onto itself which we can show is a homeomorphism. But, without further infor-
mation on ψ , we do not know if Ψ maps IR to itself. Hence we do not know, in
general, if Ψ will induce an automorphism of B∞(2N)/IR = AR.

By slightly adapting the construction in the previous section, we can find 2c

ideals {IR×N : R∈R0}with the following properties. First, AR1×N is not equivalent
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to AR2×N unless R1 = R2. Secondly, given any infinite discrete group G, we can
define an anti-action of G as permutations of N which induces an action of G on
B∞(2N). This action maps each ideal IR×N to itself. It induces a free ergodic action
of G on B∞(2N)/IR×N = AR×N. We shall carry out the details of this construction
below.

First we start with a feasible pair (T,U) then we obtain a new feasible system
(T ×N,O) and observe that whenever R is an admissible set for (T,U) then R×N
is an admissible set for (T ×N,O). We then take any countably infinite group G.
We define an anti-action of G on T ×N,g → σg and observe that this anti-action
maps each set R×N to itself. For each g ∈ G we associate a permutation of the
natural numbers, εg. We extend this in a natural way to a permutation of F(N),
which we again denote by εg.

We can now define a bijection of F(N) × F(T × N) by σ̃g(k,K) =
(εg(k),σg(K)). By applying Lemma 24, to the Big Cantor space 2F(N)×F(T×N)

we obtain a homeomorphism of the Big Cantor space by defining αg(x) = x◦ σ̃g.
We find that g → αg is an action of the group G which maps XR×N onto itself,
for each R. Hence it maps each KR×N onto itself. Because homeomorphisms map
meagre sets to meagre sets this induces an action α of G as ∗-automorphisms of
C(K̂R×N). We then show that this action is (i) free and (ii) ergodic. That is (i) if
p is a non-zero projection and αg acts as the identity on pC(K̂R×N) then g is the
neutral element of the group G. And (ii) if p is a projection such that αg(p) = p
for every g ∈ G then p = 0 or p = 1.

We then use the techniques of the preceding section to show that g → εg in-
duces an action of G on B∞(2N) which maps each ideal IR×N onto itself and hence
induces an action on B∞(2N)/IR×N. This action can be identified with the action
α of G as ∗-automorphisms of C(K̂R×N). In particular, the action on B∞(2N)/IR×N
is free and ergodic.

Let (T,U) be a feasible pair and let G be a countably infinite set. For example,
we may suppose that G = N. Then T ×G may be thought of as the disjoint union
of countably many copies of T , T ×{g1},T ×{g2}, . . . .

From the definition of feasibility, U = (U1,U2, . . .), where this is an infinite
sequence of non-empty subsets of T , with Um 6= Un whenever m 6= n. Let us
consider the countable set {Un×{g} : g ∈ G, n = 1,2, . . .}. Let O = (O(n)) (n =
1,2, . . . ) be an enumeration (without repetitions) of this set.

Lemma 25 The pair (T ×G,O) is feasible.

Proof The first condition for feasibility is straightforward, so we establish the
second. Take a finite subset of T ×G, {(t j,g j) : j = 1,2, . . . , p} = M. Let (t,g) ∈
(T ×G)\M.

First we observe that Un×{g} is disjoint from {(t j,g j)∈M : g j 6= g} for every
n.

Next we note that t /∈ {t j : (t j,g j) ∈ M & g j = g}. Then, because (T,U) is a
feasible pair,

{n ∈ N : t ∈Un & Un∩{t j : (t j,g j) ∈M & g j = g}= ∅}

is an infinite set.
Hence {n ∈ N : (t,g) ∈Un×{g} & (Un×{g})∩M = ∅} is infinite. ut
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Lemma 26 Let R be an admissible subset of T for the pair (T,U). Then R×G is
an admissible subset of T ×G for the pair (T ×G,O).

Proof Suppose Un×{g} ⊂ R×G. Then Un ⊂ R. This is false. ut

We may now specialise the constructions of the previous section by putting
G = N, so the feasible pair becomes (T ×N,O) and the admissible sets R×N.
If we replace N by any other countably infinite set we change nothing except
notation.

We now let G be a countably infinite discrete group, which we will keep fixed
until we specify otherwise. There is a bijection n → gn from N onto G. This in-
duces a bijection from T ×N onto T ×G. It follows that the G action on T ×G
defined below, can be identified with a G-action on T ×N. A key point is that ad-
missible sets R×N are left invariant by this action of G on T ×N; they correspond
precisely to the sets R×G.

If we replace G by any other countably infinite set we obtain, up to isomor-
phism, the same collection of 2c commutative monotone complete C∗-algebras.
We will show that G has a free ergodic action on each of these algebras. Since
this holds for each choice of countably infinite group, this will show that all such
groups have free ergodic actions on every one of these algebras.

For each g ∈ G we define a bijection on T ×G by σg(t,h) = (t,g−1h). It is
clear that if R⊂ T then σg is a bijection of R×G onto itself.

It is straight forward to verify that g→ σg is an injective group anti-homomor-
phism of G into the group of all bijections of T ×G. Furthermore, for each O(n),
σg[O(n)] is O(m) for some m. In particular σg maps the set {O(n) : n = 1,2, . . .}
onto itself.

We define εg(n) to be the unique natural number such that σg[O(n)] =
O(εg(n)). Then εg is a permutation of N. Furthermore g→ εg is an injective group
anti-homomorphism of G into S∞, the group of all permutations of N.

For each g, we can extend εg to a bijection of F(N), which we again denote
by εg, by setting εg(∅) = ∅ and, when {n1, . . . ,np} is a finite subset of N, let
εg({n1, . . . ,np}) = {εg(n1), . . . ,εg(np)}. Then g → εg is an injective group anti-
homomorphism of G into the group of all bijections of F(N).

We define π2 to be the projection from T ×G onto the second coordinate i.e.
π2(t,g) = g. We observe that for each O(n), π2[O(n)] is a singleton. In particular,
π2[σgO(n)] = g−1π2[O(n)]. Let e be the neutral element of the group. Then, for
g 6= e, σgO(n) 6= O(n). Equivalently, O(εg(n)) 6= O(n). i.e. εg(n) 6= n.

We shall need the following two technical lemmas later when establishing
ergodicity and freeness of the action we define.

Lemma 27 Let (k,K) and (l,L) be in F(N)×F(T ×G). Then there exists g ∈ G
such that

(i) whenever n ∈ k then σgO(n)∩L = ∅ and
(ii) whenever n ∈ l then σg−1O(n)∩K = ∅. That is n ∈ k implies O(εg−1(n))∩

L = ∅ and n ∈ l implies O(εg(n))∩K = ∅.

Proof First we observe that π2 maps {O(n) : n ∈ k}∪K into a finite subset of G,
say, {g1, . . . ,gp}. It also maps {O(n) : n ∈ l}∪L into another finite subset of G,
say, {h1, . . . ,hq}. Since G is infinite, there is a group element g which is not in



28 K. Saitô, J.D.M. Wright

the finite set {h jg−1
i : 1≤ i≤ p,1≤ j ≤ q}. So g{g1, . . . ,gp}∩{h1, . . . ,hq}= ∅.

Equivalently {g1, . . . ,gp}∩g−1{h1, . . . ,hq}= ∅.
Now let n ∈ k. Then gπ2[O(n)] /∈ π2[L]. So π2[σg−1O(n)] /∈ π2[L]. Hence

σg−1O(n)∩L = ∅. So O(εg−1(n))∩L = ∅.
Similarly, let n ∈ l, then σgO(n)∩K = ∅. That is O(εg(n))∩K = ∅. ut

Lemma 28 The following statement is false. There exist g ∈ G\{e} and (k,K) ∈
F(N)×F(T ×G) such that for every (l,L) ∈ F(N)×F(T ×G), whenever k ⊂
l,K ⊂ L and On∩K = ∅ for each n ∈ l\k, then εg(l) = l and σg(L) = L.

Proof Let us assume that the given statement is true. Then, in particular, σg(K) =
K.

Let K = {(t j,g j) : j = 1, . . . , p}. Since T is infinite, we can find t ∈ T\{t j :
j = 1, . . . , p}. Let L = K ∪ {(t,e)}. Put l = k. Then by the assumed statement,
σg(L) = L. So σg((t,e)) ∈ L. That is (t,g−1) ∈ L. Since t /∈ {t j : j = 1, . . . , p} we
must have (t,g−1) = (t,e). But this implies that g−1 = e, which is a contradiction.
ut

For each g ∈ G, when K = {(t j,g j) : j = 1,2, . . . , p}, we define σ̃g (k,K) to
be (εg(k),σg[K]) = (εg(k),{(t j,g−1g j) : j = 1,2, . . . , p}). Then g → σ̃g can be
shown to be an injective anti-homomorphism of G into the group of all bijections
of F(N)×F(T ×G).

At this point, and until further notice, we shall fix R, and work with R×G, an
admissible subset of T ×G. Later on we shall permit R to vary.

Let us recall that, for each k ∈ F(N), fk is the element of 2F(N)×F(T×G) which
is defined as the characteristic function of

{(l,L) : l ⊂ k,L ∈ F((T ×G)\(R×G)) and On∩L = ∅ for each n ∈ k\l}.

To avoid a forest of tiny subscripts of subscripts we shall sometimes write
“ε(g)” instead of “εg”.

Lemma 29 For each g ∈ G and for each k ∈ F(N)

fk ◦ σ̃g = fε(g−1)(k).

Proof By definition fk ◦ σ̃g(l,L) = fk(εg(l),σg(L)). This takes the value 1, if, and
only if, εg(l)⊂ k,σg(L) ∈ F((T ×G)\(R×G)) and O(n)∩σg(L) = ∅ whenever
n ∈ k\εg(l).

Since σg is a bijection of R×G onto itself, σg(L) ∈ F((T ×G)\(R×G)) pre-
cisely when L ∈ F((T ×G)\(R×G)). Also O(n)∩ σg(L) = ∅ precisely when
σ−1

g [On]∩L = ∅ i.e. when O(ε(g−1)(n))∩L = ∅.
We also have n ∈ k\εg(l) precisely when ε(g−1)(n) ∈ ε(g−1)(k)\l.
So fk ◦ σ̃g(l,L) = 1 if, and only if, l ⊂ ε(g−1)(k), L ∈ F((T ×G)\(R×G))

and O(ε(g−1)(n))∩L = ∅ whenever ε(g−1)(n) ∈ ε(g−1)(k)\l.
This is equivalent to l⊂ ε(g−1)(k), L∈F((T×G)\(R×G)) and O(p)∩L = ∅

whenever p ∈ ε(g−1)(k)\l.
This occurs precisely when fε(g−1)(k)(l,L) = 1. Hence fk ◦ σ̃g = fε(g−1)(k). ut
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For each g ∈ G let αg : 2F(N)×F(T×G) → 2F(N)×F(T×G) be defined by αg(x) =
x◦ σ̃g. By Lemma 24 αg is a homeomorphism of the Big Cantor space onto itself.
Straightforward calculations show that g → αg is an injective group homomor-
phism of G into the group of all homeomorphisms of the Big Cantor space onto
itself. By Lemma 29, αg[XR×G] = XR×G for each g. So, by continuity, αg[KR×G] =
KR×G for each g ∈ G. Hence g → αg is an action of G as homeomorphisms
of KR×G. Let qR be the canonical quotient homomorphism of B∞(KR×G) onto
B∞(KR×G)/M(KR×G) ≈ C(K̂R×G). Then, arguing as at the beginning of this sec-
tion, we can define αg(qR( f )) = qR( f ◦αg−1) for each g ∈ G and f ∈ B∞(KR×G);

this gives an action of G as ∗-automorphisms on C(K̂R×G).

Lemma 30 The action g → αg is an ergodic action on B∞(KR×G)/M(KR×G) ≈
C(K̂R×G).

Proof Let E be a Baire subset of KR×G such that αg(πR(χE)) = qR(χE) for each
g∈G. Thus χE ◦αg−χE ∈M(KR×G) for each g∈G. Hence the symmetric differ-
ence between αg[E] and E is a meagre set. But there is a unique regular open set
U , such that the symmetric difference between E and U is meagre. Then the sym-
metric difference between αg[U ] and U is a meagre set. So αg[U ]\clU is a meagre
open set. By the Baire Category Theorem this set must be empty. So αg[U ]⊂ clU .
Thus αg[U ]⊂ int(clU) = U . By replacing g by g−1 we obtain the reverse inequal-
ity. Thus αg[U ] = U for each g ∈ G.

Let us assume that U is neither the empty set nor the whole of KR×G. Then
KR×G\U is a closed set with non-empty interior.

So, by Lemma 20, there exist (k,K) and (l,L) in F(N)×F((T ×G)\(R×G))
such that ∅ 6= E(l,L) ⊂ KR×G\U and ∅ 6= E(k,K) ⊂U .

Thus αg[E(l,L)] is disjoint from E(k,K) for all g ∈ G. Equivalently, E(l,L) is dis-
joint from αg[E(k,K)] for all g ∈ G. ut

By Lemma 27 we can find g ∈ G such that n ∈ k implies O(εg−1(n))∩L = ∅
and n ∈ l implies O(εg(n))∩K = ∅.

Put h = εg−1(k)∪ l and consider fh. Now for all p ∈ h\l, p ∈ εg−1(k) and so
Op∩L = ∅. Hence fh(l,L) = 1. That is fh ∈ E(l,L).

Now consider α−1
g ( fh) = fh ◦ σ̃g−1 = fε(g)(h) by Lemma 29. So α−1

g ( fh) =
fk∪ε(g)(l). But q ∈ ε(g)(l) implies O(q)∩K = ∅. So

fk∪ε(g)(l)(k,K) = 1. Hence α−1
g ( fh)∈E(k,K). Thus fh ∈αg[E(k,K)]∩E(l,L). This

is a contradiction. Hence πR(χE) is 0 or 1. In other words the action is ergodic.

Lemma 31 The action g→ αg on B∞(KR×G)/M(KR×G)≈C(K̂R×G) is free.

Proof Let g ∈ G such that, for some non-zero projection p ∈C(K̂R×G), αg(pz) =
pz for each z ∈C(K̂R×G).

Let E be a Baire set such that πR(χE) = p. Let U be the unique regular open
set which differs from E only on a meagre set. Since p is not zero, U is not empty.
Let Q be any clopen subset of U . Then πR(χQ)≤ p and so αg(Q) = Q. By Lemma
20 we can find a non-empty clopen set E(k,K) ⊂U . (Where K ⊂ (T ×G)\(R×G)).
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By hypothesis, each clopen subset of E(k,K) remains fixed under αg. So, if E(l,L) ⊂
E(k,K) then E(l,L) = E(ε(g)(l),σ(g)[L]). By Lemma 21, l = εg(l) and L = σg[L].

Suppose we are given any (l,L) ∈ F(N)×F(T ×G), for which k ⊂ l,K ⊂ L
and On ∩K = ∅ for each n ∈ l\k. Then fl ∈ E(l,L) ∩E(k,K). So, by Corollary 17,
E(l,L) ⊂ E(k,K). So from the preceding paragraph l = εg(l) and L = σg[L]. But, by
Lemma 28, this is false unless g = e. So the action is free. ut

We now revert to our earlier notation. We use (T ×N,O) instead of (T ×G,O)
because we now wish to emphasise that we consider the actions of different groups
G. The free ergodic actions we have constructed above work for any countably in-
finite group, giving actions on AR×N for each choice of R, where R is admissible
for the original feasible pair (T,U). The key point which made the above construc-
tion work was that R×N was invariant for each G-action. We shall now relate our
constructions to actions of quotients of the classical Cantor space.

Let Γ be the map from the Big Cantor space onto the small Cantor space,
defined in the previous section by: for x∈ 2F(N)×F(T×N) let Γ (x)(n) = x(({n},∅))
for n = 1,2, . . . . Then Γ is a continuous map from the Big Cantor space into
2N, the classical Cantor space. Let ΓR×N be the restriction of Γ to KR×N then it
is a continuous map from KR×N onto 2N. Then IR×N is the σ -ideal of B∞(2N)
consisting of all bounded Baire functions f such that f ◦ΓR×N ∈ M(KR×N). By
Theorem 4 B∞(2N)/IR×N is isomorphic to B∞(KR×N)/M(KR×N) ≈ C(K̂R×N) =
AR×N.

We now show how the action of G can be represented on
B∞(KR×N)/M(KR×N).

We observe that, for any x ∈ 2F(N)×F(T×N) we have

Γ (αg(x))(n) = αg(x)({n},∅) = x(σ̃g({n},∅) = x({εg(n)},∅) = Γ (x)(εg(n)).

For each g ∈ G and each y ∈ 2N we define ε̂g(y)(n) = y(εg(n)). Then, by
Lemma 24, ε̂g is a homeomorphism of 2N onto itself.

We have Γ (αg(x)) = ε̂g(Γ (x)). That is, Γ ◦αg = ε̂g ◦Γ . On taking restrictions
to KR×N we find ΓR×N ◦αg = ε̂g ◦ΓR×N.

Since αg is a homeomorphism of KR×N onto itself, it maps meagre sets to mea-
gre sets. So, for F ∈ B∞(KR×N),F ∈M(KR×N) if, and only if, F ◦αg ∈M(KR×N).
So, for f ∈ B∞(2N),

f ∈ IR×N ⇐⇒ f ◦ΓR×N ∈M(KR×N)⇔ f ◦ΓR×N ◦αg ∈M(KR×N)⇔

⇔ f ◦ ε̂g ◦ΓR×N ∈M(KR×N)⇔ f ◦ ε̂g ∈ IR×N.

Hence we can define an action g → ε̃g by putting ε̃g( f + IR×N) = f ◦ ε̂g−1 +
IR×N.

In the previous section, we defined a σ -homomorphism γR×N from B∞(2N) to
B∞(KR×N) by γR×N( f ) = f ◦ΓR×N. As in Corollary 18, we let qR×N be the canon-
ical quotient homomorphism of B∞(KR×N) onto B∞(KR×N)/M(KR×N). Then, see
Theorem 4, qR×N ◦ γR×N is a σ -homomorphism of B∞(2N) onto
B∞(KR×N)/M(KR×N) whose kernel is IR×N. So B∞(2N)/IR×N is isomorphic to
B∞(KR×N)/M(KR×N) = AR×N under an isomorphism π , where π( f + IR×N) =
qR×N( f ◦ΓR×N).
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We have π(ε̃g( f + IR×N) = π( f ◦ ε̂g−1 + IR×N) = qR×N( f ◦ ε̂g−1 ◦ ΓR×N) =
qR×N( f ◦ΓR×N ◦αg−1) = αg(qR×N( f ◦ΓR×N)) = αg(π( f + IR×N)) for all g ∈ G
and all f ∈ B∞(2N). So π ◦ ε̃g = αg ◦π for all g ∈ G.

Hence it follows that the action g → ε̃g on B∞(2N)/IR×Nis equivalent to the
action g→ αg on AR×N.

Let
N : T ×N 7−→P(N)

be the map defined by
N(t) = {n ∈ N : t ∈ O(n)}.

In the statement of the following theorem and corollary, we are considering
only spectroids modulo (T ×N,N). The arguments above give:

Theorem 5 For every countably infinite group G, there exists a free ergodic action
g → ε̃g on B∞(2N)/IR×N. In particular, this action is induced by an action of G
as permutations of N which induces an action, as homeomorphisms, of 2N which
leaves each of the σ -ideals IR×N invariant. Furthermore R×N is in the spectroid
of AR×N = B∞(2N)/IR×N. That is, R×N ∈ ∂ (AR×N) whenever R is admissible for
(T,U).

For the sake of definiteness, we shall suppose that T = 2N, and that U is an
enumeration, without repetitions of the clopen subsets of 2N. Let us fix R[, a closed
nowhere dense subset of 2N of cardinality c. Then R[ is admissible for (T,U). We
may, for example, take R[ to be the set

{x ∈ 2N : x(2n) = 0, when n = 1,2, . . .}.

Let R be the collection of all subsets of R[ of cardinality c. So #R = 2c. For
each R ∈R, the set R is admissible for (T,U) and hence R×N is admissible for
(T ×N,O).

Corollary 21 There exists R0 ⊂R, such that #R0 = 2c and, whenever R and S
are distinct elements of R0, then AR×N and AS×N have different spectroids (modulo
(T×N,N)) and wAR×N 6= wAS×N. Also, for each R∈R0, R×N∈ ∂ (AR×N), where
this spectroid is modulo (T ×N,N).

Proof This follows from Theorem 5, Theorem 3 and Corollary 10. ut

8 Conclusions

Let C be a collection of closed commutative ∗-subalgebras of `∞ such that each
algebra A is monotone complete, is non-atomic, and, for each countably infinite
discrete group G, admits a free ergodic action of G. We further suppose that the
union of the spectroids of the algebras in C has cardinality 2c. The existence of
such a collection follows from Section 7 by using Corollary 21 and dropping to
a subset if necessary. We may (and shall) also assume that distinct algebras in C
never have the same spectroid, modulo some (T,N). (In particular #C = 2c) We
fix this (T,N).
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Lemma 32 The set {wA : A ∈ C } is a subset of W which has cardinality 2c.

Proof When A and B are distinct elements of C they have different spectroids and
hence wA 6= wB. So w is an injection from C into W . ut

Lemma 33 Let B and A be monotone complete C∗-algebras with an isomorphism
π from A onto a monotone closed subalgebra of B. Let Γ be a faithful normal
conditional expectation from B onto π(A). Then wB = wA.

Proof Since π is an isomorphism it is faithful and since its range is a monotone
closed subalgebra of B, it is a normal map into B. So A - B.

Since Γ is faithful and normal, B - A. Hence wA = wB. ut

Let A ∈ C . Let G be a countably infinite discrete group with a free ergodic ac-
tion α on A. Then there is more than one way of using a cross-product construction
to produce a factor AG×α in which there is an isomorphism π of A onto a maxi-
mal abelian subalgebra of AG×α and a faithful normal conditional expectation Γ

from AG×α onto π[A]. So, even if the cross- products associated with A are not all
known to be isomorphic they are, by Lemma 33, equivalent to each other and to A.
In other words, wAG×α = wA. In particular, since A is not a von Neumann algebra,
wA 6= 0. Hence wAG×α 6= 0 and so AG×α is not a von Neumann algebra. It can be
shown that each of these monotone cross-products is a small C∗-algebra. (To see
this we may argue as follows. Since A is a ∗-subalgebra of `∞, it acts on `2. Hence
the monotone complete tensor product A⊗L(`2(G)) is completely isometric to a
subsystem of L(`2⊗ `2(G)). Since AG×α is a unital ∗-subalgebra of A⊗L(`2(G)),
also AG×α is small). [14] (See also [29]).

So we have the following:

Theorem 6 Let the above (T×N,N) be fixed. There exists a collection F of small
Type III factors such that each factor is wild and #F = 2c. Furthermore if A and
B are distinct elements of F then ∂(T×N,N)(A) 6= ∂(T×N,N)(B) and so wA 6= wB.
Also the union of the spectroids, (modulo (T ×N,N)), of the factors in F is of
cardinality 2c.

For each small wild factor M its injective envelope I(M) is an injective mono-
tone complete C∗-algebra which is also a small wild factor (see for example, [13]
and [15]). Furthermore the natural injection of M into I(M) implies that M - I(M).
So wM ≤ wI(M). In particular ∂(T×N,N)(M) ⊂ ∂(T×N,N)(I(M)). Since wM 6= 0 it
follows that wI(M) 6= 0, that is, I(M) is not a von Neumann algebra.

Corollary 22 There exists a collection F0 of small wild injective factors such that
#F0 = 2c. Furthermore if A and B are distinct elements of F0 then ∂(T×N,N)(A) 6=
∂(T×N,N)(B) and so wA 6= wB. Also the union of the spectroids of the factors in F0
is of cardinality 2c.

Proof This follows from applying Theorem 3 to {I(A) : A ∈F}. ut

It can be shown that countable sums of small injective algebras are small in-
jective algebras. Hence w maps the small injective algebras onto a sub semi-group
of W . Clearly, from Corollary 22, the cardinality of this semi-group is 2c. So this
gives a classification semigroup for injective operator systems. Also spectroids
gives classification invariants for injective operator systems.



Classifying monotone complete algebras 33

Remark 7 (Open problem) For each injective map J from R into the collection
of infinite subsets of N, there exists a corresponding spectroid ∂(R,J)(A) for each
small monotone complete C∗-algebra A. We know that wA = wB implies
∂(R,J)(A) = ∂(R,J)(B) for every J.

What about the converse? Suppose that ∂(R,J)(A) = ∂(R,J)(B) whenever J is an
injective map from the real numbers into the collection of infinite subsets of the
natural numbers. Does this imply that wA = wB? Or are there counter examples?
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