New study shows carbon dioxide storage is secure climate mitigation tool

New study shows carbon dioxide storage is secure climate mitigation tool

New research shows that captured carbon dioxide can be stored safely for thousands of years by injecting the liquefied gas deep underground into the microscopic pore spaces of common rocks.

The findings – published in Nature Communications today – increase confidence in the widespread roll-out of engineered carbon capture and storage.

In the study, researchers from Scottish Carbon Capture & Storage (SCCS), whose partner institutes include the Universities of Aberdeen and Edinburgh, compiled a worldwide database of information from natural carbon dioxide and methane accumulations and hydrocarbon industry experience – including engineered gas storage, decades of borehole injection, and laboratory experiments.

Computer simulations were used to combine all these factors and model storage of carbon dioxide for 10,000 years into the future. Previous research in this area had not fully accounted for the natural trapping of carbon dioxide in rock as microscopic bubbles, or the dissolving of carbon dioxide into the salty water already in the rocks.   

The UN Paris agreement has committed the world to limiting climate warming to well below 2°C from pre-industrial levels. This requires huge reductions in the amount of the greenhouse gas, carbon dioxide, which is released to the atmosphere from industry, electricity generation, heating and transport.

Capturing these emissions and ensuring that carbon dioxide can be safely trapped underground is crucial for the successful protection of the atmosphere.

Dr Juan Alcalde, who co-led the research at the University of Aberdeen said: “The security of carbon dioxide storage is an understandable concern for people, communities and governments. Our work shows that the storage of carbon dioxide necessary to help address climate change can be secure for many thousands of years.”

Dr Stephanie Flude who co-led the work at the University of Edinburgh said: “We selected the model inputs to be conservative but realistic. Importantly, our computer simulations, based on good-regulation practices, such as those used currently in the North Sea, retained more than 90% of the injected carbon dioxide after 10,000 years in 95% of the cases. The most probable outcome being at least 98% retention.”

Search News

Browse by Month

2024

  1. Jan
  2. Feb
  3. Mar
  4. Apr
  5. May There are no items to show for May 2024
  6. Jun
  7. Jul
  8. Aug
  9. Sep
  10. Oct
  11. Nov There are no items to show for November 2024
  12. Dec There are no items to show for December 2024

2014

  1. Jan
  2. Feb
  3. Mar
  4. Apr
  5. May
  6. Jun
  7. Jul There are no items to show for July 2014
  8. Aug
  9. Sep There are no items to show for September 2014
  10. Oct There are no items to show for October 2014
  11. Nov
  12. Dec

2013

  1. Jan
  2. Feb
  3. Mar
  4. Apr There are no items to show for April 2013
  5. May
  6. Jun
  7. Jul There are no items to show for July 2013
  8. Aug
  9. Sep
  10. Oct
  11. Nov
  12. Dec There are no items to show for December 2013

2012

  1. Jan
  2. Feb
  3. Mar
  4. Apr
  5. May
  6. Jun There are no items to show for June 2012
  7. Jul There are no items to show for July 2012
  8. Aug There are no items to show for August 2012
  9. Sep
  10. Oct
  11. Nov
  12. Dec

2011

  1. Jan There are no items to show for January 2011
  2. Feb There are no items to show for February 2011
  3. Mar There are no items to show for March 2011
  4. Apr There are no items to show for April 2011
  5. May There are no items to show for May 2011
  6. Jun There are no items to show for June 2011
  7. Jul There are no items to show for July 2011
  8. Aug There are no items to show for August 2011
  9. Sep There are no items to show for September 2011
  10. Oct
  11. Nov There are no items to show for November 2011
  12. Dec There are no items to show for December 2011