FUNDAMENTALS OF ENGINEERING MATERIALS

FUNDAMENTALS OF ENGINEERING MATERIALS
Course Code
EG 1009
Credit Points
15
Course Coordinator
Dr M Kashtalyan

Pre-requisites

None

Co-requisites

None

Overview

  • Introduction. Materials, processes and choice: a historical prospective. Overview of material properties – physical, mechanical, thermal, electrical, magnetic, optical, chemical – with examples of where these properties are important. (2 lectures)

  • Organising materials and processes. Classification of materials and its hierarchical structure. Overview of the main classes of materials: metals, ceramics, polymers, hybrids. Material property charts. Classification of processes and its hierarchical structure. Computer-aided information management for materials and processes using CES Edupack. Materials and processes in the context of design. Case studies. (4 lectures)

  • Physical properties. density and how it is measured. Relevance to engineering applications. Underpinning principles: atomic structure. Exploring density chart with CES Edupack. (1 lecture)

  • Mechanical properties: stiffness. Modes of loading. Engineering stress and strain. Stress-strain curve. Elastic deformation, Hooke’s law and elastic moduli. Young’s modulus and its measurement. Underpinning principles: atomic packing and bonding. Bonding and packing in metals. Important crystallographic structures: hpc, fcc, bcc. Atom packing in ceramics, glasses and polymers. Exploring the modulus-density and modulus-cost charts with CES Edupack. (7 lectures)

  • Mechanical properties: yield and tensile strengths. Ductility. Definitions and measurement. Hardness test. Underpinning principles: crystalline imperfections. Exploring the yield strength-density and modulus-yield strength charts with CES Edupack. (3 lectures)

  • Thermal properties of materials. Melting temperature, glass temperature, thermal expansion, thermal conduction, heat capacity. Exploiting thermal properties. Using materials at high temperatures. Temperature dependence of material properties. (3 lectures)

  • Processing of materials. Shaping, joining and surface treatment and their attributes. Exploring material-process compatibility with CES Edupack. Shaping processes for metals (sand, investment and die casting). Microstructure evolution in processing. Underpinning principles: phase diagrams and the solidification of alloys. Shaping processes for polymers (injection, blow and rotational moulding). Deformation processes: rolling, forging, extrusion, drawing. Underpinning principles: Annealing of metals. Powder methods. Underpinning principles: diffusion. Joining processes (adhesive bonding, mechanical fastening, soldering and welding). (8 lectures)

  • Materials, processes and the environment. Material consumption and its growth. The material life cycle. Criteria for life cycle assessment: embodied energy, process energy and end of life potential. Exploring charts for embodied energy with CES Edupack. Selecting materials for eco-design. (2 lectures)

Structure

The course will consist of 30 one-hour lectures, 6 tutorials and 5 two-hour laboratory sessions. Detailed schedules are provided separately.

Assessment

1st Attempt: One written examination of two-hours duration (80%) and continuous assessment based on the laboratory/design exercises (20%).

Resit: One written examination of two-hours duration (80%), with previous coursework marks used to make up the remaining (20%).

Formative Assessment

Students will have their log book and lab reports assessed on several occasions during the half session, and these will be returned to them with markers' comments. There will also be opportunities for informal formative assessment and feedback in the weekly tutorial sessions.

Feedback

The return of marked coursework (log books and lab reports) will provide formal feedback to the students. Informal feedback will be provided during weekly tutorial sessions.