Last modified: 31 Jul 2023 11:19
Analysis provides the rigourous, foundational underpinnings of calculus. This course builds on MX3035 Analysis III, continuing the development of multivariable calculus, with a focus on multivariable integration. Hilbert spaces (infinite dimensional Euclidean spaces) are also introduced.
Students will see the benefit of having acquired the formal reasoning skills developed in Analysis I, II, and III, as it enables them to work with increasingly abstract concepts and deep results. Techniques of rigourous argumentation continue to be a prominent part of the course.
Study Type | Undergraduate | Level | 3 |
---|---|---|---|
Term | Second Term | Credit Points | 15 credits (7.5 ECTS credits) |
Campus | Aberdeen | Sustained Study | No |
Co-ordinators |
|
Description: Syllabus
1 Multidimensional Riemann integral
1.1 The de nition of the multidimensional Riemann integral over boxes
1.2 Riemann second criterion of integrability
1.3 Properties of the Riemann integral
1.4 Iterated integrals
1.5 Riemann integrals over bounded sets
1.6 Change of variables
2 Path and surface integrals
2.1 Paths and path integrals
2.2 Surfaces and surface integrals
2.3 Gauss divergence theorem
2.4 Stokes's theorem
3 Hilbert spaces
3.1 Scalar products on linear spaces
3.2 The definition of the Hilbert space
3.3 Orthonormal bases in Hilbert spaces and the isomorphism theorem
3.4 Orthogonal decompositions and orthogonal projection operators
3.5 Continuous linear functionals and the Riesz Representation Theorem
Information on contact teaching time is available from the course guide.
Assessment Type | Summative | Weighting | 25 | |
---|---|---|---|---|
Assessment Weeks | Feedback Weeks | |||
Feedback |
Knowledge Level | Thinking Skill | Outcome |
---|---|---|
|
Assessment Type | Summative | Weighting | 50 | |
---|---|---|---|---|
Assessment Weeks | Feedback Weeks | |||
Feedback |
Knowledge Level | Thinking Skill | Outcome |
---|---|---|
|
Assessment Type | Summative | Weighting | 25 | |
---|---|---|---|---|
Assessment Weeks | Feedback Weeks | |||
Feedback |
Knowledge Level | Thinking Skill | Outcome |
---|---|---|
|
There are no assessments for this course.
Assessment Type | Summative | Weighting | ||
---|---|---|---|---|
Assessment Weeks | Feedback Weeks | |||
Feedback |
Best of (resit exam mark) or (resit exam mark with carried forward CA marks). |
Knowledge Level | Thinking Skill | Outcome |
---|---|---|
|
Knowledge Level | Thinking Skill | Outcome |
---|---|---|
Conceptual | Understand | be familiar with the concept of Jordan measurability and understand theorems about Jordan measurable sets; |
Conceptual | Apply | be able to prove most results from the course; |
Factual | Apply | be able to state the main definitions and theorems of the course; |
Conceptual | Apply | apply ideas from Euclidean spaces such as inner products and convergence to the abstract setting of Hilbert spaces. |
Factual | Understand | understand integration and theorems about the Riemann integral for multivariable functions; |
We have detected that you are have compatibility mode enabled or are using an old version of Internet Explorer. You either need to switch off compatibility mode for this site or upgrade your browser.