Last modified: 31 May 2022 13:05
Analysis provides the rigorous, foundational underpinnings of calculus. This course builds on the foundations in Analysis I, and explores the notions of differential calculus, Riemann integrability, sequences of functions, and power series.
The techniques of careful rigorous argument seen in Analysis I will be further developed. Such techniques will be applied to solve problems that would otherwise be inaccessible. As in Analysis I, the emphasis of this course is on valid mathematical proofs and correct reasoning.
Study Type | Undergraduate | Level | 2 |
---|---|---|---|
Term | Second Term | Credit Points | 15 credits (7.5 ECTS credits) |
Campus | Aberdeen | Sustained Study | No |
Co-ordinators |
|
- Differentiation of functions of one variable: basic definitions and properties, chain rule, basic results on differentiable functions, Rolle's Theorem, Mean Value Theorem.
- Riemann integrability: Riemann sums, basic properties, the Fundamental Theorem of Calculus, improper integrals - Sequences of functions: pointwise convergence, uniform convergence, properties of limits of functions, series of functions
- Power series: convergence, continuity, differentiability, integrability, Taylor series
Syllabus
Course Aims
To further develop understanding of the concepts, techniques, and tools of calculus. Calculus is the mathematical study of variation. This course emphasises differential and integral calculus, sequences and series of functions.
Learning Objectives
By the end of this course the student should:
Information on contact teaching time is available from the course guide.
1st Attempt
10x Weekly muti-choice or short answer online quizzes - 1% each
3x Standard course assessments - 30% each
Alternative Resit Arrangements
Resubmission of failed elements (pass marks carried forward)
There are no assessments for this course.
Knowledge Level | Thinking Skill | Outcome |
---|---|---|
Factual | Understand | be able to state the main definitions and theorems of the course; |
Factual | Apply | Be able to prove most results from the course; |
Conceptual | Understand | be familiar with the concept of differentiability and understand theorems about differentiable functions; |
Factual | Understand | understand Riemann integration and theorems about the Riemann integral; |
Conceptual | Apply | Be able to apply techniques for showing integrability or non-integrability of functions; |
Conceptual | Apply | Be able to distinguish between pointwise and uniform convergence of sequences of functions |
Factual | Analyse | Be able to compute Taylor series, compute the interval of convergence of power series, and use Taylor's theorem to estimate functions by polynomials. |
We have detected that you are have compatibility mode enabled or are using an old version of Internet Explorer. You either need to switch off compatibility mode for this site or upgrade your browser.