Last modified: 31 May 2022 13:05
Galois theory is based around a simple but ingenious idea: that we can study field extensions by instead studying the structure of certain groups associated to them. This idea can be employed to solve some problems which confounded mathematicians for centuries, including the impossibility of trisecting an angle with ruler and compass alone, and the insolubility of the general quintic equation.
Study Type | Undergraduate | Level | 4 |
---|---|---|---|
Term | First Term | Credit Points | 15 credits (7.5 ECTS credits) |
Campus | Aberdeen | Sustained Study | No |
Co-ordinators |
|
Information on contact teaching time is available from the course guide.
Alternative Assessment
3x Assignments (33% each)
Alternative Resit Assessment
Resubmission of failed elements (pass marks carried forward)
There are no assessments for this course.
Knowledge Level | Thinking Skill | Outcome |
---|---|---|
Factual | Remember | ILO’s for this course are available in the course guide. |
We have detected that you are have compatibility mode enabled or are using an old version of Internet Explorer. You either need to switch off compatibility mode for this site or upgrade your browser.