production
Skip to Content

MA1006: ALGEBRA (2020-2021)

Last modified: 05 Aug 2021 13:04


Course Overview

This course introduces the concepts of complex numbers, matrices and other basic notions of linear algebra over the real and complex numbers. This provides the necessary mathematical background for further study in mathematics, physics, computing science, chemistry and engineering.




Course Details

Study Type Undergraduate Level 1
Term First Term Credit Points 15 credits (7.5 ECTS credits)
Campus Aberdeen Sustained Study No
Co-ordinators
  • Dr Zur Izhakian
  • Professor Ran Levi

Qualification Prerequisites

  • Either Programme Level 1 or Programme Level 2

What courses & programmes must have been taken before this course?

  • Either Programme Level 1 or Programme Level 2
  • Any Undergraduate Programme
  • One of Mathematics (MA) or Physics (PX) or Bachelor Of Science In Geophysics or Master of Engineering in Computing Science or Higher Grade (Sce/Sqa) Mathematics at Grade A1/A2/A/B3/B4/B/C5/C6/C or UoA Mathematics MAADV

What other courses must be taken with this course?

None.

What courses cannot be taken with this course?

Are there a limited number of places available?

No

Course Description

The basic course includes a discussion of the following topics: complex numbers and the theory of polynomial equations, vector algebra in two and three dimensions, systems of linear equations and their solution, matrices and determinants.

Syllabus

  • Solving equations.
  • Polynomial equations and their roots, polynomial long division, the Rational root theorem.
  • Introduction to complex numbers. The addition, subtraction, multiplication and division of
  • Complex numbers. Modulus and Argument and the representation of such numbers on an Argand diagram. Loci and regions in the Argand diagram. De Moivre’s theorem and applications. Complex exponential, logarithm, sine and cosine.
  • Systems of linear equations, Gaussian elimination.
  • Matrix algebra. Determinants of square matrices (of any dimension). Matrix inversion (the cofactor method and Gaussian elimination).
  • Vectors and linear maps. Special matrices (e.g rotation matrices). Matrix design. Eigenvalues and eigenvectors.
  • Topics from: Diagonalizability. Subspaces, dimensions and linear independence. The rank and nullity of a matrix.

Contact Teaching Time

Information on contact teaching time is available from the course guide.

Teaching Breakdown

More Information about Week Numbers


Details, including assessments, may be subject to change until 30 August 2024 for 1st term courses and 20 December 2024 for 2nd term courses.

Summative Assessments

4x assessments (25% each, assignments or online tests or a mixture of the two)

Alternative Resit Arrangements for students taking course in Academic Year 2020/21

Resubmission of failed elements (pass marks carried forward)

Formative Assessment

There are no assessments for this course.

Course Learning Outcomes

Knowledge LevelThinking SkillOutcome
FactualRememberILO’s for this course are available in the course guide.

Compatibility Mode

We have detected that you are have compatibility mode enabled or are using an old version of Internet Explorer. You either need to switch off compatibility mode for this site or upgrade your browser.