Last modified: 25 Sep 2019 09:58
Many examples of rings will be familiar before entering this course. Examples include the integers modulo n, the complex numbers and n-by-n matrices with real entries. The course develops from the fundamental definition of ring to study particular classes of rings and how they relate to each other. We also encounter generalisations of familiar concepts, such as what is means for a polynomial to be prime.
Study Type | Undergraduate | Level | 3 |
---|---|---|---|
Term | Second Term | Credit Points | 15 credits (7.5 ECTS credits) |
Campus | Aberdeen | Sustained Study | No |
Co-ordinators |
|
Syllabus
Information on contact teaching time is available from the course guide.
Assessment Type | Summative | Weighting | 80 | |
---|---|---|---|---|
Assessment Weeks | Feedback Weeks | |||
Feedback |
Knowledge Level | Thinking Skill | Outcome |
---|---|---|
|
Assessment Type | Summative | Weighting | 20 | |
---|---|---|---|---|
Assessment Weeks | Feedback Weeks | |||
Feedback |
Knowledge Level | Thinking Skill | Outcome |
---|---|---|
|
There are no assessments for this course.
Assessment Type | Summative | Weighting | ||
---|---|---|---|---|
Assessment Weeks | Feedback Weeks | |||
Feedback |
Knowledge Level | Thinking Skill | Outcome |
---|---|---|
|
Knowledge Level | Thinking Skill | Outcome |
---|---|---|
|
We have detected that you are have compatibility mode enabled or are using an old version of Internet Explorer. You either need to switch off compatibility mode for this site or upgrade your browser.