production
Skip to Content

EX3029: CHEMICAL THERMODYNAMICS (2019-2020)

Last modified: 25 Sep 2019 09:58


Course Overview

The course aims to give a thorough treatment of the real PVT behaviour exhibited by multicomponent, multiphase systems by giving candidates the knowledge required to determine: a) the heat and/or work required to bring about a given change of state; b) the change of state resulting from a transfer of energy in the form of heat and/or work, or as a result of a chemical reaction. To build on the knowledge of process simulation gained in Level 2 and emphasize, in examples and laboratories, the importance of selecting an appropriate fluid package.

Course Details

Study Type Undergraduate Level 3
Term First Term Credit Points 15 credits (7.5 ECTS credits)
Campus Aberdeen Sustained Study No
Co-ordinators
  • Dr Jefferson Gomes

Qualification Prerequisites

  • Either Programme Level 3 or Programme Level 4

What courses & programmes must have been taken before this course?

  • One of Non-Graduating Student in Engineering Erasmus (Studied) or Non-Graduating Student in Engineering Iss (Studied) or Master of Engineering in Chemical Engineering (Studied) or Bachelor of Engineering in Chemical Engineering (Studied) or Master of Engineering in Petroleum Engineering (Studied) or Bachelor of Engineering in Petroleum Engineering (Studied)
  • One of EG2002 Process Engineering (Passed) or EG2011 Process Engineering (Passed) or EG2580 Chemical Engineering Fundamentals (Passed)
  • Any Undergraduate Programme (Studied)
  • Engineering (EG) (Studied)
  • One of EG2003 Fluid Mechanics & Thermodynamics (Passed) or EG2004 Fluid Mechanics & Thermodynamics (Passed) or EG2539 Fluid Mechanics and Thermodynamics (Passed)

What other courses must be taken with this course?

None.

What courses cannot be taken with this course?

Are there a limited number of places available?

No

Course Description

The course begins with an introduction to process modelling incorporating a revision of essential chemical engineering thermodynamics. The ideal gas law and equations for the computation of process heat/work requirements for isochoric, isobaric and isothermal processes are briefly revised. Adiabatic and polytropic processes are also treated. Advanced concepts including virial and cubic EOS are introduced.

The P-V and P-T phase diagrams, as well as the thermodymanic T-S, H-S, P-H diagrams for a pure substance are introduced together with the terms ?reduced pressure? and ?reduced temperature?. The isothermal compressibility and volume expansivity are discussed for liquids. Heat effects in terms of latent heats, standard heats of reaction and formation are introduced.

Vapour pressure and the Antoine Equation are treated allowing two-component vapour-liquid equilibrium to be discussed in terms of Raoult?s law and modified Raoult?s law.

PVT relations for real gas mixtures are addressed; Dalton?s & Amagat?s laws modified by compressibility and the pseudo-critical method employing Kay?s law are covered.

Residual properties and the experimental determination of thermodynamic properties are addressed.

Solution thermodynamics concepts including fugacity and excess properties are introduced together with property changes of mixing. Activity models are discussed.

Chemical reaction equilibria are treated including an evaluation of equilibrium constants and their relation to composition. The phase rule for reacting systems is discussed. Multireaction equilibria are introduced.


Contact Teaching Time

Information on contact teaching time is available from the course guide.

Teaching Breakdown

More Information about Week Numbers


Details, including assessments, may be subject to change until 30 August 2024 for 1st term courses and 20 December 2024 for 2nd term courses.

Summative Assessments

Exam

Assessment Type Summative Weighting 80
Assessment Weeks Feedback Weeks

Look up Week Numbers

Feedback

There will be a test exam at the end of the teaching session. The test exam will be marked (but is not part of the continuous assessment) and the test exam paper questions will be discussed in the Revision week.
Students requesting feedback on their exam performance should make an appointment within 4 weeks of the publication of the exam results.

Learning Outcomes
Knowledge LevelThinking SkillOutcome
Sorry, we don't have this information available just now. Please check the course guide on MyAberdeen or with the Course Coordinator

Assessment Type Summative Weighting 20
Assessment Weeks Feedback Weeks

Look up Week Numbers

Feedback

Students can receive feedback on their progress with the Course on request at the weekly tutorial/feedback sessions. Students are given feedback through formal marking and return of laboratory reports.

Learning Outcomes
Knowledge LevelThinking SkillOutcome
Sorry, we don't have this information available just now. Please check the course guide on MyAberdeen or with the Course Coordinator

Formative Assessment

There are no assessments for this course.

Resit Assessments

Exam

Assessment Type Summative Weighting 100
Assessment Weeks Feedback Weeks

Look up Week Numbers

Feedback
Learning Outcomes
Knowledge LevelThinking SkillOutcome
Sorry, we don't have this information available just now. Please check the course guide on MyAberdeen or with the Course Coordinator

Course Learning Outcomes

Knowledge LevelThinking SkillOutcome
Sorry, we don't have this information available just now. Please check the course guide on MyAberdeen or with the Course Coordinator

Compatibility Mode

We have detected that you are have compatibility mode enabled or are using an old version of Internet Explorer. You either need to switch off compatibility mode for this site or upgrade your browser.