Last modified: 25 May 2018 11:16
Group theory concerns the study of symmetry. The course begins with the group axioms, which provide an abstract setting for the study of symmetry. We proceed to study subgroups, normal subgroups, and group actions in various guises. Group homomorphisms are introduced and the related isomorphism theorems are proved. Composition series are introduced and the Jordan-Holder theorem is proved. Sylow p-subgroups are introduced and the three Sylow theorems are proved. Throughout symmetric groups are consulted as a source of examples.
Study Type | Undergraduate | Level | 3 |
---|---|---|---|
Term | First Term | Credit Points | 15 credits (7.5 ECTS credits) |
Campus | None. | Sustained Study | No |
Co-ordinators |
|
Syllabus
Information on contact teaching time is available from the course guide.
1st Attempt: 1 two-hour written examination (80%); in-course assessment (20%). Resit: 1 two-hour examination (maximum of 100% resit and 80% resit with 20% in-course assessment). Only the marks obtained on first sitting can be used for Honours classification.
Informal assessment of weekly homework through discussions in tutorials.
We have detected that you are have compatibility mode enabled or are using an old version of Internet Explorer. You either need to switch off compatibility mode for this site or upgrade your browser.