15 credits
Level 1
Second Term
This course provides an introduction to the design and analysis techniques used within electronic engineering, and to the major active components (diodes and transistors). The course opens with a description of charges, the forces between charges and the concept of electric fields. The second part of the course deals with semiconductor devices, opening with fundamental properties of doped semiconductors.
15 credits
Level 1
First Term
The aim of the course is to introduce basic concepts of electrical & electronics within a context of general engineering. The topics covered are kept at an elementary level with the aim of providing the foundational material for subsequent courses at levels 1 and 2. The course adopts the philosophy of application oriented teaching. During each topic the students will be provided with examples of day-to-day devices. Topics covered include dc circuit analysis, electronic amplifiers, digital circuits, optoelectronics, and ac theory.
15 credits
Level 1
First Term
The course is designed to introduce the students to different methods of communication in the process of interchanging ideas and information. Oral presentation and writing of technical reports are introduced. The importing data from web-based and library-based sources will be integrated through information retrieval and investigative skills training. Professional ethics are covered on plagiarism, copyright and intellectual property. Engineering drawing skills and knowledge of relevant British and International Standards will be developed through intensive training in the use of computer aided design and modelling package, SolidWorks. Standard drawing formats including 3D depiction of stand alone parts and assemblies are covered.
15 credits
Level 1
First Term
This course is aimed at those students who want to build confidence and skills working in mathematics. This is applies to both those who need to build knowledge and those who simply wish to revise and strengthen their existing knowledge.
Mathematics is fundamental tool in Engineering. This course will help develop an understanding of the meaning of the abstract mathematics and this, in turn, helps to improve speed and accuracy working with mathematical notation. Topics covered are listed in the Course Description.
15 credits
Level 1
First Term
Engineering design depends on materials being shaped, finished and joined together. Design requirements define the performance required of the materials. What do engineers need to know about materials to choose and use them successfully? They need a perspective of the world of materials. They need understanding of material properties. They need methods and tools to select the right material for the job. This course will help you develop knowledge and skills required for the successful selection and use of engineering materials.
15 credits
Level 1
Second Term
15 credits
Level 1
Second Term
Engineering Mechanics is concerned with the state of rest or motion of objects subject to the action of forces. The topic is divided into two parts: STATICS which considers the equilibrium of objects which are either at rest or move at a constant velocity, and DYNAMICS which deals with the motion and associated forces of accelerating bodies. The former is particularly applied to beams and truss structures. The latter includes a range of applications, such as car suspension systems, motion of a racing car, missiles, vibration isolation systems, and so on.
15 credits
Level 2
Second Term
This course provides students with the opportunity to refresh and extend their knowledge to analyse the mechanical behaviour of engineering materials and structures. In particular, mechanical properties of materials, and 2D and 3D stresses and strains are examined, the effects of internal imperfections on the performance of materials under loading, brittle fracture, fatigue and non-destructive testing are discussed. The structural analysis of beams and columns, deflection and buckling, as well as design applications are also considered in the course.
15 credits
Level 2
Second Term
Hands-on lab sessions (and relative assignments) include software-based simulations and hardware implementation of systems that allow students to test and deepen their understanding of the subject.
15 credits
Level 2
First Term
The fluid mechanics section of the course begins with the material properties of fluids. This is followed by studying fluid statics and principles of fluid motion. Bernoulli’s equation is used to explain the relationship between pressure and velocity. The final fluids section introduces the students to incompressible flow in pipelines.
The thermodynamics section presents: the gas laws, including Van Der Waals’ equation; the first law of thermodynamics with work done, heat supply, and the definitions of internal energy and enthalpy. The second law is introduced including entropy through the Carnot cycle.
15 credits
Level 2
First Term
A general engineering course that provides an insight into the two main conservation principles, mass and energy. Processes are usually described through block diagrams. This language, common to many disciplines in engineering, helps the engineering to look at their processes with an analytical view. Degree of freedom analysis is addressed, emphasising its importance to solve a set of linear equations that model fundamental balances of mass. Practical examples of Energy balances are displayed, bringing Thermodynamics to a practical level. Process control is also introduced, explaining basic control techniques and concepts, i.e sensors, feedback, control loops and PID controllers.
15 credits
Level 2
First Term
This course follows Engineering Mathematics 1 in introducing all the mathematical objects and techniques needed by engineers. It has three parts:
15 credits
Level 2
Second Term
The use of computing (MATLAB) as an aid to practical design and as computational analysis tool will be developed. The course covers engineering design process. Exercises will be undertaken to gain an appreciation of the development of existing designs. Material selection is included from a viewpoint of quality, impact on environment and sustainability. Practical aspects of the manufacturing process is covered through lectures and hands-on experience of workshop practice. Advanced use of SolidWorks and milling simulation software will be covered culminating in the production. Issues such as design protection, copyright and patents will be explained as part of this process.
15 credits
Level 2
Second Term
15 credits
Level 3
First Term
Aimed principally at students interested in civil engineering. It aims to familiarise students with the fundamental concepts involved in soil mechanics and engineering geology. The first course in the civil engineering programme that includes the importance of soil mechanics and therefore foundations in the structural design. The main emphasis is understanding the main principles of soil mechanics through the introduction of laboratory tests commonly used to obtain the engineering properties of different types of soil such as sand and clay. Discussion of the consequences of some soil failures (such as in the case of Tower of Pisa) are also introduced.
15 credits
Level 3
Second Term
The major topic of this course is an introduction to modern methods of elastic structural analysis. In this topic, direct, energy and matrix methods are jointly used to solve, initially, problems of the deformation of simple beams. The theorem of virtual work is introduced in the context of beams and frameworks.
The rigid-plastic analysis of beams is then introduced along with the upper bound theorem and their importance to engineering design.
15 credits
Level 3
Second Term
This course is an introduction to Structural Design using steel, concrete and composite steel/concrete.
The emphasis is on the design of individual components – the ‘Structural Elements’ – these being members in tension, compression, bending – in either steel or reinforced concrete – and in the bolted and welded connections between steel members.
Associated with this course is an extensive laboratory exercise testing reinforced and un-reinforced concrete to destruction.
It should be noted that students are also required to do the separate course EG3720, half of which consists of a 9 week Steel Design exercise.
10 credits
Level 3
Second Term
This course introduces the theory of dynamics and the vibration of single and multi-degree of freedom systems.
10 credits
Level 3
Second Term
This course consists of two quite separate halves. The first is a 9 week Civil Engineering Design activity, which runs concurrently with the associated course EG3519 (Design of Structural Elements). Generally there will be two half days of timetabled sessions in each of those 9 weeks. The second half of the course is a one-week residential Field Surveying and Hydrology field trip, which usually takes place in the first week of the Easter break. There will be a charge to students to cover the specific transport, food and accommodation costs associated with that field trip.
15 credits
Level 3
First Term
To aim of the course is to provide students with a basic understanding and concepts of control systems. The course starts by introducing basic concepts of feedback control systems using a number of practical examples. Mathematical modelling of physical systems and representing them in block diagrams with transfer functions are presented. Basic control system response characteristics (stability, transient response, steady state response) and analysis and design procedures are introduced using first and second order systems. Analysis of control systems using Routh-Hurwitz criterion, root locus, and Bode plot methods are considered.
15 credits
Level 3
First Term
How can the dynamic behaviour of a mechanical mass-spring-damper system be similar to an electrical resistance-capacitance-inductance circuit? Motivated by this question, this course introduces the signals – systems framework that helps in describing the dynamic behaviour of systems for a variety of inputs (signals). Useful analysis tools both in the frequency- and the time-domain are also introduced. In the later part of the course, these concepts will be used to understand basic signal processing in the form of both analog and digital filter design.
15 credits
Level 3
First Term
15 credits
Level 3
Second Term
The course studies the systems for the generation, transmission and use of electrical energy. The per-unit notation system is introduced. Basic approaches in the three phase AC systems analysis are introduced. Three-phase induction and synchronous machines are studied, and a simple equivalent circuit for the machine is derived and used to explore the operating limitations of each type of the machine. Modern power conversion methods are discussed for conversion between AC and DC. This discussion includes power electronic switches and the basic topology of rectifiers, DC-DC converters and inverters. The advantages of switching conversion techniques over traditional circuits are highlighted.
15 credits
Level 3
Second Term
This course addresses the design of digital electronic systems using synthesis techniques. The course commences with a discussion of design principles applicable to digital systems, including specification. Combinational logic, including minimisation, is studied. The course then turns to the use of VHDL for the simulation and synthesis of digital systems. The design of combinational logic, including arithmetic, and then synchronous sequential systems is considered. Coverage is sufficient to enable students to design simple combinational and sequential circuits and to use a synthesis tool.
10 credits
Level 3
Second Term
A short course teaching fundamentals of digital communications engineering. The course focuses on remote control of equipment using a serial communication bus. Starts with a description of the data received from a GPS device (to identify location and time), then studies the Digital Multiplex (DMX) control bus (a standard in the live entertainment industry) followed by Remote Device Management (RDM) and the Controller Area Network (CAN). Teaching and tutorials will be supported by demonstrations of actual equipment and by a corresponding set of practical laboratory exercises that each student must complete. Accessible to students of computer science and electrical/electronic engineering.
10 credits
Level 3
Second Term
This course provides design, analysis and control of digital systems (hardware/Software) through practical implementation. This course involves three practical design projects. Each project relates with practical applications encounters in our daily life. In each project students learn how to combine available tools to produce the complete result. The theoretical aspects of the course are placed in an illustrative context through these design-and-build activities. The course begins with a discussion of different sensors commonly employed by the industry. These include sensors such as infrared, ultrasound, temperature sensors, and magnetic sensors to measure rotational speed.
15 credits
Level 3
First Term
Modern engineering analysis relies on a wide range of analytical mathematical methods and computational techniques in order to solve a wide range of problems. The aim of this course is to equip students with the necessary skills to quantitatively investigate engineering problems. Examples applying the methods taught to practical situations from across the full range of engineering disciplines will feature heavily in the course.
10 credits
Level 3
Second Term
To course aims to provide students with an awareness of purpose, principals, fundamental concepts and strategies of safety and project management.
15 credits
Level 3
First Term
One of the roles of an engineer is to ensure that engineering components perform in service as intended and do not fracture or break into pieces. However, we know that sometimes engineering components do fail in service. Course examines how we determine the magnitude of stresses and level of deformation in engineering components and how these are used to appropriately select the material and dimensions for such component in order to avoid failure. Focus is on using stress analysis to design against failure, and therefore enable students to acquire some of the fundamental knowledge and skills required for engineering design.
15 credits
Level 3
First Term
The course begins with the concept of dynamic similarity and the application of dimensional analysis to model-testing. This is followed by sections on steady and unsteady flow in pressure conduits; rotodynamic fluid machines including cavitation and pump-pipeline matching; open channel flow, mainly focused on steady uniform and steady rapidly varied flows; and porous media flow with applications in civil, mechanical, chemical and petroleum engineering.
The laboratory exercises are designed to reinforce concepts covered in lectures and include experiments on the performance characteristics of hydraulic machines and measurements of the essential features of flow in an open channel.
15 credits
Level 3
First Term
The course focuses, initially, on the major groups of solid materials – metals, ceramics, polymers, and provides an introduction to materials selection. Strengthening mechanisms in these systems and the relationship between microstructure and mechanical properties are highlighted. The main failure and degradation processes of materials in service, fracture, fatigue, creep and corrosion, are considered. The major welding and adhesive bonding processes are introduced, and structural integrity of welded joints is examined. Finally, the course gives a comprehensive introduction to composite materials and motivation for their use in current structural applications. Manufacturing of different types of composites is reviewed.
15 credits
Level 3
Second Term
10 credits
Level 3
Second Term
The course begins introducing thermodynamic properties and reviewing first and second laws. The material is then taken forward into application in a focused module on production of power from heat which includes: steam power plants; internal-combustion and gas-turbine engines. This is followed by a module on refrigeration and liquefaction. The course continues with a detailed discussion of the applications of thermodynamics to flow processes including: duct flow of compressible fluids in pipes and nozzles; turbines; compression processes. The course concludes with a module on psychrometry which includes: humidity data for air-water systems; humidification & dehumidification systems.
10 credits
Level 3
Second Term
15 credits
Level 3
Second Term
15 credits
Level 3
Second Term
This course presents an introduction to the theories that govern the flow of oil and gas through a reservoir rock. The mechanisms that drive the fluid flow through the reservoir and that control hydrocarbon production are described and discussed. Some ways of increasing hydrocarbon production are introduced. The course is intended for students on the honours petroleum engineering degree program and students will require a strong engineering, or physics background (to level 3) and a good grasp of engineering mathematics at level 3 (or equivalent).
10 credits
Level 3
Second Term
This course provides experience of working in a team by carrying out a practical well engineering design.
The design will draw on theories and concepts from courses previously and/or currently being studied by the student. This course may be accompanied by lectures from practising engineers on professional aspects of petroleum engineering design and practice. Students will be encouraged to attend relevant local meetings of professional engineering societies and institutions.
10 credits
Level 3
Second Term
This course introduces students to the fundamentals of well fluid and reservoir testing and the implications for reservoir characterisation. The theory of reservoir pressure testing is introduced, testing methods examined and some of the standard analysis techniques are explored using both “hand calculations” and industry standard software.
15 credits
Level 3
First Term
The course aims to give a thorough treatment of the real PVT behaviour exhibited by multicomponent, multiphase systems by giving candidates the knowledge required to determine: a) the heat and/or work required to bring about a given change of state; b) the change of state resulting from a transfer of energy in the form of heat and/or work, or as a result of a chemical reaction. To build on the knowledge of process simulation gained in Level 2 and emphasize, in examples and laboratories, the importance of selecting an appropriate fluid package.
15 credits
Level 3
First Term
This course focuses on applied momentum, heat, and mass transport in relevant engineering systems. The analytical results of transport phenomena are demonstrated in simple systems before discussing more complex systems, such as multiphase flow, which require the use of semi-empirical correlations to solve.
15 credits
Level 3
Second Term
Starting from previously attained knowledge and understanding of equilibrium, kinetics, thermochemistry and material and energy balancing on reactive processes, the course sets about developing skills in the design and sizing of industrial chemical reactors. Batch and continuous reactors of different types are covered with design equations being derived from fist principles for a variety of systems with different degrees of complexity. The course focuses on homogeneous reactions, design for single and parallel reactions, reactor modelling for non-ideal flow, temperature and pressure effects and chemical reaction process safety. Other elements of chemical reaction engineering are introduced.
15 credits
Level 3
Second Term
This course covers the fundamental concepts of equilibrium and rate-based analysis of separation processes, and gives examples of relevant separation processes. It introduces the concept and analysis of a unit operation as applied to separation processes and demonstrates the analysis of relevant separation processes by applying mass and energy balance methods.
10 credits
Level 3
Second Term
A series of team and individual design exercises are used to develop a transcendence of understanding and problem solving across the elements of core chemical engineering and general engineering covered thus far in the degree programme. Designs may include gas processing, fluid storage and transport, heat transfer, separation unit operations etc. The course is supported by industry in that some of the designs are developed in collaboration with industry and the course ends with a field trip to an industrial processing plant.
10 credits
Level 3
Second Term
This course aims to develop students? ability in process simulation, broadly, in two areas: 1) the use of commercially available steady-state process simulation engines; 2) the development of process models and simulations from first principles using other applications such as Matlab, MathCad and Excel. In achieving these aims, the course will allow students to further develop their skillset in Process Thermodynamics, Process Analysis and Chemical Engineering Computer Applications.
10 credits
Level 4
First Term
It aims to equip students with the main concepts of foundation design where the concepts of pile foundations, retaining walls and slope stability are explored. The course gives a student adequate tools to understand the design approaches associated with different types of soil. Geotechnical standard code, Eurocode 7 is introduced and discussed. In addition principles of ground water flow and the main problems related to its sustainable management are discussed. This course aims for a student to reach an adequate level in soil mechanics and foundation engineering as the basis for the training of a professional civil or structural engineer.
10 credits
Level 4
First Term
The course begins with consideration of boundary layer development over a flat plate and curved surfaces, leading to boundary layer separation and forces on immersed bodies. This is followed by study of water wave theory with application to coastal and offshore engineering. These topics are also part of the EG40JJ Fluid Dynamics course. The second part of the course focuses on open channel flow and sediment transport, covering the St Venant equations, calculation of gradually varied flow profiles, fundamental aspects of sediment transport, and the calculation of bed load and suspended load transport.
10 credits
Level 4
First Term
This course is a follow-on course to the Level 3 Course on Design of Structural Elements (EG3519) (and to some extent the Level 3 Civil Engineering Design (EG3720)). It covers four main areas:
a) Design of Industrial Buildings in Structural Steelwork
b) Design of steel-framed multi-storey buildings
c) Design of domestic buildings using masonry and timber
d) Design of pre-stressed concrete
15 credits
Level 4
Second Term
Course extends the basic stiffness method of analysis developed in the pre-requisite courses. Fundamental principles of the stiffness method of analysis, with automatic assembly of the stiffness matrix for rigid jointed plane frames and space structures, are presented in some detail. Elastic instability of frames, and the design of continuous steel beams and portal frames using plastic methods will be undertaken. Analysis of flat plates and slabs using yield line theory, and an introduction to shells also covered. The course concludes with a brief outline of the finite element method of analysis, with computer-based applications forming an important practical component.
15 credits
Level 4
Second Term
This course will deal with various aspects related to:
10 credits
Level 4
First Term
10 credits
Level 4
First Term
This course examines the performance and control of electrical machines and drives. Transient performance of various electrical machines (induction, synchronous and DC) is discussed using two-axis-machine theory. Steady state performance is also considered. Simulation techniques are used as appropriate in studying both transient and steady state performance of the electrical machines and drives. Medium and high-performance AC drives are considered, including V/f and vector control drives. Modern AC machine control in rotating DQ co-ordinate frame is studied in some detail. DC machine drives (thyristor-controlled and transistor-controlled drives) are discussed and analysed.
10 credits
Level 4
First Term
Course studies the interplay between computer architecture and software design, with the aim to devise efficient systems for a broad range of applications. Processor architecture features (pipeline and cache) are discussed in parallel with the software techniques (for high-level programming or compilation) required to fully exploit the potential of modern hardware.
Hands-on activities include design and execution of small software projects. Alternative software implementations of a target algorithm are compared to understand differences in performance (e.g. execution speed) resulting from the different interactions with the hardware architecture. This allows students to test and deepen their understanding of the subject.
15 credits
Level 4
Second Term
This is a course about the design and operation of computer networks. The course explores the history of the Ethernet local network standards and how this developed from a cable bus to a switched high-speed network. It also describes the operation of the network and transport layers, using examples from Internet Engineering to explain how a packet switched network can provide services that can be used by applications. The course is accessible to students of computer science and electronic engineering.
60 credits
Level 4
Full Year
The course is designed to provide the student with the opportunity to carry out a project in an approved European institution by pursuing a substantial and realistic exercise in the practice of engineering at or near a professional level, and to further enhance the student's critical and communication skills.
45 credits
Level 4
Full Year
To provide the student with the opportunity of pursuing a substantial and realistic research project in the practice of engineering at or near a professional level, and to further enhance the student's critical and communication skills. The project will usually be carried out at the University of Aberdeen but may be carried out at industry or other research location.
30 credits
Level 4
Full Year
To provide the students with the opportunity of pursuing a substantial and realistic exercise in the practice of engineering at or near a professional level, and to further enhance the student's critical and communication skills. The project will be carried out over both half-sessions in the University of Aberdeen.
10 credits
Level 4
First Term
The course is aimed principally at students interested in mechanical engineering. It aims to equip students with the analytical and problem-solving skills required to calculate the vibration response of nonlinear systems and engineering components like rods, tensioned cables and beams. The course includes a mixture of analytical and numerical methods (Matlab) for the solution of these problems. It also includes an alternative method for generating equations of motions and an overview of instability in dynamic systems with the Tacoma Narrows Bridge used as an example.
60 credits
Level 4
Second Term
The course is designed to provide the student with the opportunity to carry out a project in an approved European institution by pursuing a substantial and realistic exercise in the practice of engineering at or near a professional level, and to further enhance the student's critical and communication skills.
15 credits
Level 4
Second Term
This course is a concentrated design and reporting exercise which requires application of project management and team liaison skills in addition to technical design ability. Specific exercises will include interdisciplinary aspects and will relate to design requirements arising from the professional activities of the School of Engineering or its industrial contacts. Written and oral presentations form part of the course.
10 credits
Level 4
First Term
The course begins with consideration of boundary layer development over a flat plate and curved surfaces, leading to boundary layer separation and forces on immersed bodies. This is followed by study of water wave theory with particular application to coastal and offshore engineering. These topics are also part of the EG40JF Civil Engineering Hydraulics course. The second part of the course concentrates on compressible flow. Using the fundamental conservation equations, the characteristics of converging-diverging nozzles and accelerating supersonic flows are examined. Plane and oblique shock waves, Prandtl-Meyer flow and Navier-Stokes equations are then introduced.
10 credits
Level 4
First Term
Heat transfer is perhaps the most useful aspect of thermodynamics with related problems being found in all branches of engineering. This course concentrates on conduction, radiation and convection. In each part there is a thorough coverage of the fundamentals as well as selected applications.
10 credits
Level 4
First Term
The course is aimed principally at students interested in mechanical engineering. It aims to equip students with the analytical and problem-solving skills required to calculate the vibration response of nonlinear systems and engineering components like rods, tensioned cables and beams. The course includes a mixture of analytical and numerical methods (Matlab) for the solution of these problems. It also includes an alternative method for generating equations of motions and an overview of instability in dynamic systems with the Tacoma Narrows Bridge used as an example.
15 credits
Level 4
Second Term
This course provides students with the opportunity to familiarise themselves with the concept of nonlinearity and nonlinear behaviour of engineering systems, structures and materials. In particular, fundamental principles of analytical and computational methods used in nonlinear mechanics are examined, simple nonlinear engineering systems and nonlinear fluid flows (e.g., Newtonian and non−Newtonian flows for various Reynolds numbers) are modelled and analysed using Computational Fluid Dynamics package and Finite Elements software.
10 credits
Level 4
First Term
This course provides students with an understanding of advanced concepts of geomechanics and their application to safe, environmentally friendly and efficient drilling for, and production of, hydrocarbon fluids. The course has no formal pre-requisites, but is intended for students on the Honours Petroleum Engineering Degree Programme and students will require a strong Engineering, or Physics background (to Level 3), and a good grasp of Engineering Mathematics at Level 3 (or equivalent).
10 credits
Level 4
First Term
This course provides detailed understanding of the methodologies and relevant engineering science and technology for efficient and safe production of oil and gas.
10 credits
Level 4
First Term
This course provides students with understanding of analytical methods that can be used to assess different improved hydrocarbon recovery methods and identify the principal mechanisms controlling the performance of producing oil and gas reservoirs.
15 credits
Level 4
Second Term
This course provides a detailed overview of oil and gas field development from discovery to abandonment with particular focus on the decisions made prior to first production. The roles of uncertainties, economics considerations, safety and environmental impact on the design choices are explored.
10 credits
Level 4
First Term
The aim of the course is to provide students with an understanding of the industrial relevance of common biochemical processes and to allow them to model, analyse, and design such systems.
This course introduces the fundamentals of microbiology and biochemistry, the main cell constituents, DNA, RNA, enzymes, membranes. The kinetics of enzymatic reaction and of microbial growth is reviewed. The mass and heat transfer theory developed as part of other courses is applied to biochemical process. The design methodology for biochemical processes is described. Typical biochemical processes are described, including beer, whisky, penicillin, monoclonal antibody, wastewater treatment10 credits
Level 4
First Term
To build on the introduction to safety provided in previous years and move towards developing a transcendence of knowledge regarding how the core process engineering fundamentals such as material and energy balancing, thermodynamics, heat transfer, mass transfer, fluid flow and reaction engineering underpin process safety from a systems perspective.
10 credits
Level 4
First Term
15 credits
Level 4
Second Term
To add breadth to students' curriculum in the core area of separation processes. Familiarises students with particulate solids, their properties and characterisation. The motion of particles, including Stokes' Law and Darcy's Law, in fluids is covered in depth in order to facilitate analysis and design of separation process unit operations. Further aims are to provide students with a broad knowledge and understanding of physical separation processes such as filtration, sedimentation, centrifugation, settling. By the end students should have a knowledge and understanding of, an ability to analyse and an ability to design a wide variety of physical separation unit operations
15 credits
Level 5
First Term
15 credits
Level 5
First Term
To extend the work of earlier level courses in control systems to advanced, modern control methods, including transfer function, state vector and artificial-intelligence-based techniques, applicable to the design of both continuous and discrete-time systems.
15 credits
Level 5
First Term
In recent years optical systems have become the centrepiece of many applications in science, engineering and commerce; ranging from optical communications to fibre sensors, holography to 3DTV, spectroscopy of materials to laser welding and cutting, and from precision measurement to laser surgery, to name but a few. The course offers students an overview of the concepts of modern optics, optical systems and sensing applications. A major part involves an introduction to lasers, their operation and incorporation into systems design. A case study approach is adopted to describe a range of sensing and system applications in industry, science and commerce.
15 credits
Level 5
First Term
This course examines various natural resource forms which are source of hydrocarbons but its extraction poses an engineering challenge. It analyses the utilisation coal in the form of methane production from its seams and underground coal gasification, hydrocarbon production from shale, oil sands and methane hydrates. This course encompasses a wider approach from the fundamentals of hydrocarbon placement, retention and transport phenomena in porous media to environmental impact assessment of extraction activities. Resource estimation and reservoir engineering aspects specific to each of the aforementioned resources will be discussed. Case studies of geological basins with successful unconventional hydrocarbon recovery are analysed.
15 credits
Level 5
First Term
Wave equations describe transient phenomena commonly encountered in all areas of engineering. This course covers: (i) elastic waves, such as response of offshore structures to wind or wave loading, earthquakes; (ii) acoustic waves such as water hammer in pipelines, micro-pressure waves in railway tunnels; (iii) electromagnetic waves, such as signals in transmission lines, transient states in DC cables. These phenomena in real world engineering applications are simulated using several numerical methods. Students develop their own simulation codes using Matlab or any other programming language, and run a series of simulations for the problem of their choice.
15 credits
Level 5
First Term
The course aims to provide understanding of main principles and techniques underpinning computational fluid dynamics (CFD) combining numerical methods with practical experience using appropriate software. The course develops a foundation for understanding, developing and analysing successful simulations of fluid flows applicable to a broad range of applications.
15 credits
Level 5
First Term
Students will examine the societal grand challenges of water, food, medicine and energy (electricity and heat) to thread together the themes of environment, sustainability and ethics.
The course also aims to provide graduates with a versatile framework for evaluating and developing business models which should prove invaluable for both potential entrepreneurs and future senior executives.
15 credits
Level 5
First Term
15 credits
Level 5
First Term
The aim of the course is to give students a theoretical and practical understanding of the main technologies and unit operations involved in upstream oil and gas processing. The key aspects of process safety are also covered to provide the basis for developing safe and operable systems.
15 credits
Level 5
Second Term
To provide an understanding of theoretical formulation, data sources and integration into simulator, and quantification of uncertainties necessary for transforming real reservoir engineering problems into manageable numerical simulation models.
15 credits
Level 5
Second Term
15 credits
Level 5
Second Term
This course provides students with an understanding of the engineering science and principles that underpin the drilling of oil and gas well, production technologies, design methodologies, as well as associated safety and environmental considerations.
30 credits
Level 5
Second Term
15 credits
Level 5
Second Term
The general aim of the course is to expose chemical engineering students to areas of cutting edge of research in the discipline so they have skills in the topics likely to challenge chemical engineers in the period 2010-2020.
15 credits
Level 5
Second Term
With growing demand on energy, there is increasing need to maximise the production of oil and gas, especially from depleting reservoirs. This course examines the methods and processes of enhanced recovery of oil and gas and provides students with the knowledge and understanding required to develop, acquire and safely integrate enhanced oil recovery technologies into field development plan and field operations.
15 credits
Level 5
Second Term
The Engineering Risk and Reliability Analysis course develops knowledge and understanding of the key concepts in technical safety, risk and reliability used in engineering.
The course introduces general risk assessment principles and the application of probabilistic risk modelling schemes. Reliability theory and computation are addressed, using recognised engineering industry reliability methods. Students will also be introduced to safety management and human reliability, including safety management systems.
15 credits
Level 5
Second Term
The course begins with a treatment of the main items of plant and equipment, how they are designed and operated with a focus on process safety (failure modes, safe operating envelopes etc.).
Transient modes of operation are discussed and the interface of automatic process control and process safety is introduced.
The safety issues encountered in transient operations will be addressed; these include commissioning, start-up, shut-down, preparation for maintenance.
Relief and blowdown system design is developed.
Maintaining safe operations will cover the requirement for operational risk assessments, inspection and verification plans together with the development of operating and maintenance strategies.
15 credits
Level 5
First Term
Advanced materials underpin many industry sectors and are viewed as one of the key enabling technologies that can help address environmental, economic and social challenges the society is facing. Lightweight materials such as composites applied to vehicles, structures and devices can help reduce energy consumption and emissions, and reduced energy efficiency. The aim of this course is introduce students to the mechanical behaviour of composite materials and the design of structures made of composites.
15 credits
Level 5
First Term
This course introduces the water cycle and the need for wastewater treatment. Biological wastewater treatment is covered in detail with focus on: activated sludge process for carbon and nitrogen removal and anaerobic digestion. Chemical-physical processes for wastewater and wastegas treatment are also covered in detail: adsorption, stripping, chemical precipitation, chemical oxidation, membrane processes. The course focuses on process design based on mass balance and kinetics.
We have detected that you are have compatibility mode enabled or are using an old version of Internet Explorer. You either need to switch off compatibility mode for this site or upgrade your browser.