15 credits
Level 5
First Term
The course aims to develop a broad understanding about the basic concepts in electrical engineering and power systems with emphasis on renewable power generation techniques.
15 credits
Level 5
First Term
The course provides an understanding of the flow of hydrocarbon fluids through reservoir rocks and the interplay between the fluid and rock properties and reservoir performance.
15 credits
Level 5
First Term
This course provides students with an understanding of the fundamentals of well fluids and reservoir testing and the implications for reservoir characterisation and field development. The theory of reservoir pressure testing is introduced, testing methods examined and some of the standard analysis techniques are explored using both hand calculations and industry standard software.
15 credits
Level 5
First Term
With growing demand on energy, there is increasing need to maximise the production of oil and gas, especially from depleting reservoirs. This course examines the methods and processes of enhanced recovery of oil and gas and provides students with the knowledge and understanding required to develop, acquire and safely integrate enhanced oil recovery technologies into field development plan and field operations.
15 credits
Level 5
First Term
This course provides a detailed overview of oil and gas field development from discovery to abandonment with particular focus on the decisions made prior to first production. The roles of uncertainties, economics considerations, safety and environmental impact on the design choices are explored.
15 credits
Level 5
First Term
The course provides an understanding of theoretical formulation, data sources and integration into simulator, and quantification of uncertainties necessary for transforming real reservoir engineering problems into manageable numerical simulation models.
15 credits
Level 5
First Term
The MSc in Advanced Chemical Engineering is developed for undergraduate degree holders in chemical or related engineering to equip them with advanced technical skills and knowledge. Separation and Product Purification is a core course of the program. It aims to provide the knowledge and skills related to the existing and emerging separation and product purification technologies in the context of design, optimization, and operation.
The aim of this course is to provide the students with sufficient breadth and depth of prevalent and conventional and emerging separation techniques used in chemical process industries; a significant emphasis will be given to bio-separations used in biotechnology, pharmaceutical, and biomolecules. Other emerging separations in, for example, carbon capture and utilization, environmental protection, etc will be covered.
15 credits
Level 5
First Term
To provide an understanding of the physical principles, technologies and systems associated with renewable energy generation from geothermal and hydro sources. To provide an understanding of the position of these sources of energy in the current and future global energy requirements and the technical challenges in meeting the future energy demand.
15 credits
Level 5
First Term
This course provides a detailed understanding of design considerations for components to be used in offshore environments, especially in terms of materials selection, qualification, standards and testing. Reasons for failure and the application of failure analysis in design will be studied. The course will be focussed on offshore steel structures relating to traditional energy applications; however, the fundamental knowledge gained can also be applied to structural integrity assessments in other marine applications including ships, submarines and offshore renewables.This course provides a detailed understanding of design considerations for components to be used in offshore environments, especially in terms of materials selection, qualification, standards and testing. Reasons for failure and the application of failure analysis in design will be studied. The course will be focussed on offshore steel structures relating to traditional energy applications; however, the fundamental knowledge gained can also be applied to structural integrity assessments in other marine applications including ships, submarines and offshore renewables.
15 credits
Level 5
First Term
This course aims to provide a broad understanding of generation from solar sources, the associated technologies and the main technical challenges.
15 credits
Level 5
First Term
This course gives students an introduction and overview of energy transition, by focussing on the three key areas of demand, technology and economics. It begins with an introduction to the current energy system and the motivation for an energy transition. There follows a characterisation of the key drivers that underpin our social and economic reliance on energy. Subsequently, behavioural measures and technologies to enable the energy transition are examined and assessed according to diverse technical, economic and environmental criteria.
15 credits
Level 5
First Term
This course presents an overview of the motivations, challenges and technological solutions associated with Carbon Capture, Utilisation and Storage (CCUS). The main carbon capture technologies and methods, CO2 transportation and underground storage are covered. These are introduced in terms of their technical, economic, and environmental criteria, as well as stage of development. Examples of operating pilot plants are shown, complemented by industrial guest lectures and webinars.
15 credits
Level 5
First Term
Mobile robots can be used in a range of applications, including warehouses, agriculture, and other real-world environments. One of the main challenges for robots operating in the real world is that this is an unstructured environment. Nature has found clever solutions for the design of intelligent and effective systems operating in the unstructured environment hence biology is an obvious source of inspiration for robotics. In this course we take inspiration from nature to engineer intelligent systems for real-world applications as, for example, locomotion.
15 credits
Level 5
First Term
The aim of the course is to give an overview of the key techniques for enabling mobile robots to localise themselves, map their environments or do both simultaneously. The course introduces students to the fundamentals of statistical modelling and state estimation, widely used in automated vehicles and industrial automation.
15 credits
Level 5
First Term
The transport planning process is central to ensuring the implementation of high-quality transport projects. In this course, students will be introduced to the transport planning process, including appraisal, environmental impact assessment, and evaluation. The course will familiarise students with regulatory and data requirements and setting of specific, measurable, assignable, realistic and time-related (SMART) targets and metrics, through to methods of transport evaluation including cost-benefit and cost-effectiveness analysis.
15 credits
Level 5
First Term
This course will introduce the key principles in engineering science. Topics cover fluid mechanics, mass and heat transfer, chemical reaction, mechanics in materials and electricity.
15 credits
Level 5
First Term
Petrophysics, core analysis and formation evaluation are key disciplines in the oil and gas industry and renewable energy such as geothermal energy. It provides the main source of data on porosity, permeability and fluid saturations in the subsurface. Petrophysics is a crossroad discipline and petrophysicists work closely with geologists and petroleum engineers in exploration and production. This course provides essential information about petrophysics and core analysis and formation evaluation to allow petroleum engineers to interact effectively with geoscientists.
15 credits
Level 5
First Term
This course introduces the concept of Intelligent Mobility (IM). It begins with a focus on the origins of and antecedents to IM. The notion of Mobility as a Service (MaaS) is considered alongside the role of transport in the sharing economy. Meeting user needs in IM will involve consideration of issues such as virtual mobility, attitudes to automation and IM capacity and skills requirements. There will be focus on transport and ‘smart cities’ as well as ‘smart rural transport areas’. The course will conclude with a focus on future visions for IM and the development of associated scenarios.
15 credits
Level 5
First Term
This course introduces the role of policy and governance in decision-making in relation to transport. Policy and governance frameworks are studied at a range of spatial scales from the local to the global. Approaches to the financing of transport are also examined. A wide range of policy instruments available to address transport problems are explored with reference to current case studies. The course focusses on key economic, social and environmental policy domains that relate to sustainable transportation and examines their evolution and current directions.
15 credits
Level 5
First Term
This course is intended to provide students with an understanding of fundamental aspects of traffic engineering. Intelligent Mobility (IM) projects are intended in large part to impact upon traveller behaviours; however, these must be supported by appropriate decisions regarding the design and implementation of the underlying transport network. Here, we will address core concepts of traffic planning, operation and design to support network efficiency.
15 credits
Level 5
First Term
This course will introduce students to core topics in engineering in medicine, such as the nature and origin of physiological signals, the methods by which those signals are acquired and understood, and how they are used in medical devices. Students will also gain an understanding of the role of biomedical engineers in the design, safe use and management of medical devices.
15 credits
Level 5
First Term
Gives an overall picture of project management and introduces students to the main subject areas which make up this area of study. Emphasis is placed on practical skills, including writing and presentation. Students are given an overview of project management terms and definitions. Introduction to project budgeting in the context of company finance is addressed and the area of risk management (including probability, risk attitudes and risk analysis methods)
introduced. Introduction to the important area of safety management as well as an introduction to managing project teams. Topics are covered in greater depth at a later stage of the course.
15 credits
Level 5
First Term
The aim of this course is to get an understanding of applied probability and statistics. Students will be able to handle variables of a random nature, deal with parameters of different distributions and data of scattering nature.
15 credits
Level 5
First Term
The course provides an introduction to project management and is aimed at students who expect to be working in a project related environment or are considering a potential move into project management. The course covers a number of key aspects of project management from the project managers perspective and so whilst it does cover areas such as planning and estimating it is NOT intended to prepare students for such roles. Students are expected to apply their learning by completing a piece of group project work.
15 credits
Level 5
First Term
Hydrocarbon fires and explosions produce extreme loading on engineering components. Structural steels lose their strength and stiffness well below the temperatures associated with hydrocarbon fires. Safety-critical elements must be designed to withstand both these temperatures and the blast overpressures that result from hydrocarbon explosions. Simple models are used to assess the loading that results from fires and explosions. Structural elements are analysed to illustrate the design procedures that are required to prevent escalation and to design against major accident scenarios.
15 credits
Level 5
First Term
This course introduces the key concepts and components that form the subsea control system. A subsea control engineer must be comfortable in dealing with a multitude of engineering concepts at the basic level. Subsequently, this course borrows from concepts in mechanical engineering, electrical engineering, chemical engineering, environmental engineering, civil and structural engineering and hydraulics to name a few. The course tends to give a high-level systemic introduction of the various fundamental aspects necessary for a well-operating subsea control system.
15 credits
Level 5
First Term
This course describes in detail the technologies used to convert biomass into energy. The course covers combustion, gasification, pyrolysis, anaerobic digestion, bioethanol and biodiesel.
15 credits
Level 5
First Term
The world is full of uncertainties and there is a level of risk in every human activity, including engineering. Many industries require an engineer to manage significant risks and design for high reliability, such as oil and gas, subsea, nuclear, aviation and large civil projects (e.g. bridges and dams). To meet these engineering challenges and make rational decisions in the presence of uncertainty, this course will introduce students to methods and tools used by engineers to analysis risk and reliability.
15 credits
Level 5
First Term
This course will equip students with the required knowledge of offshore and subsea oil and gas production systems, and to enable them to gain an appreciation of the infrastructure and facilities that need to be removed during decommissioning.
15 credits
Level 5
First Term
15 credits
Level 5
First Term
The course serves as the entrance to the field of safety and reliability engineering with the introduction of the basic concepts and tools of safety and risk management. Legal frames related to engineering safety are also introduced.
Contents include: Fundamentals of safety engineering; natural and man-made hazards; safety measures; accident and failure statistics; fundamentals of risk management; risk assessment techniques; classical reliability theory; modelling of engineering systems as series and parallel systems; redundancy; fault trees and event trees; availability and maintainability; UK safety legislation, including the Health and Safety at Work Act and its historical, offshore and other regulations.
15 credits
Level 5
First Term
The course aims to give students an in-depth treatment of the critical technical aspects of loss of containment including factors leading to loss of containment and consequence modelling.
15 credits
Level 5
First Term
This course provides students with an understanding of the engineering science and principles that underpin the drilling of oil and gas well, production technologies, design methodologies, as well as associated safety and environmental considerations.
15 credits
Level 5
First Term
Course provides a detailed understanding of the techniques used for installation, inspection, and maintenance of subsea systems, including seabed hardware, pipelines and risers, and the implications of such techniques for the design of subsea components and systems.
The module will provide detailed knowledge on various techniques and trends in the installation, inspection and maintenance of subsea equipment, especially pipeline and riser systems and principal components. It will provide engineers with a sufficiently broad awareness of techniques used throughout offshore operations to give an appreciation and understanding of system limitations and appropriate applications for different subsea environments
15 credits
Level 5
Second Term
The aim of this course is to understand and be able to carry out probabilistic modelling of uncertainty in engineering components and systems. Students will be able to obtain a good knowledge and understanding on random variables in probabilistic analysis and be able to carry out approximation and numerical schemes on components and systems.
15 credits
Level 5
Second Term
To gain an understanding of the need to and the efficiency behind conversion of energy form one form to another and in the need to store energy in distinct forms. To understand the reasoning behind energy losses and how they might be minimised or overcome.
15 credits
Level 5
Second Term
The course aims to develop a broad understanding about the challenges and requirements of integrating renewable generators (RE) to grid, how these requirements can be met using converters, and high voltage direct current (HVDC) as a method of connecting RE to AC grids.
15 credits
Level 5
Second Term
This course provides students with an understanding of the fundamentals of well fluids and reservoir testing and the implications for reservoir characterisation and field development. The theory of reservoir pressure testing is introduced, testing methods examined and some of the standard analysis techniques are explored using both hand calculations and industry standard software.
15 credits
Level 5
Second Term
The course provides an understanding of the flow of hydrocarbon fluids through reservoir rocks and the interplay between the fluid and rock properties and reservoir performance.
15 credits
Level 5
Second Term
This course provides students with an understanding of the engineering science and principles that underpin the drilling of oil and gas well, production technologies, design methodologies, as well as associated safety and environmental considerations.
15 credits
Level 5
Second Term
This course includes three key components where chemistry is fundamental to upstream and downstream oil and gas transport and processing. In this course, you will learn about general pipeline flow assurance, and risks related to the chemistries of waxes, resins, asphaltenes, gas hydrates and scales. Chemical strategies for managing flow assurance are discussed. Processes involved in converting oil to valuable fuels and chemicals are investigated. These include: distillation, coking, cracking, hydrotreatment and reforming. Natural gas utilisation including transport, processing and conversion to upgraded products is also covered, to give an overview of chemistry in the oil and gas industry.
15 credits
Level 5
Second Term
This course provides a detailed overview of oil and gas field development from discovery to abandonment with particular focus on the decisions made prior to first production. The roles of uncertainties, economics considerations, safety and environmental impact on the design choices are explored.
15 credits
Level 5
Second Term
The course provides an understanding of theoretical formulation, data sources and integration into simulator, and quantification of uncertainties necessary for transforming real reservoir engineering problems into manageable numerical simulation models.
15 credits
Level 5
Second Term
With growing demand on energy, there is increasing need to maximise the production of oil and gas, especially from depleting reservoirs. This course examines the methods and processes of enhanced recovery of oil and gas and provides students with the knowledge and understanding required to develop, acquire and safely integrate enhanced oil recovery technologies into field development plan and field operations.
15 credits
Level 5
Second Term
The MSc in Advanced Chemical Engineering is developed for undergraduate degree holders in chemical or related engineering to equip them with advanced technical skills and knowledge in chemical engineering. Catalyst and Reactor Design is a core course of the program. It aims to provide the students with sufficient breadth and depth of catalysis and its application for catalyst design and theory and practice of reactor engineering.
15 credits
Level 5
Second Term
This course is one of the key courses for the MSc Advanced Structural Engineering. The aim of this course is to provide students with knowledge and skills of analysis and design of lightweight structures for mechanical, civil, aerospace, automotive and wind energy applications.
15 credits
Level 5
Second Term
The course aims to develop a broad understanding about the renewable energy legislation and of the relevant aspects of economics and safety.
15 credits
Level 5
Second Term
To provide an understanding of the physical principles, technologies and systems associated with renewable energy generation from wind and marine sources. To provide an understanding of the position of these sources of energy in the current and future global energy requirements and the technical challenges in meeting the future energy demand
15 credits
Level 5
Second Term
This course gives students an introduction and overview of Energy Systems Analysis (ESA), including theoretical backgrounds, example models, and hands-on model development and applications. It begins with an introduction to the field of ESA over the past decades, exploring different types of problems and modelling solutions. The course then introduces these different modelling approaches in turn, providing the students with a background in different approaches with their respective pros and cons. Subsequently, we introduce the concept of scenarios as a tool for exploring possible energy system futures.
15 credits
Level 5
Second Term
This course is one of the key courses for MSc Energy Transition. The aim of this course is to provide students with knowledge and skills of critical analysis, multi-criteria assessment and planning of various multi-energy systems by taking into account system integration considerations. The course will provide the opportunity of putting the acquired knowledge and skills into practice by delivering hands on individual and group system integration projects.
15 credits
Level 5
Second Term
Robotics is an essential component of Industry 4.0. The adoption of robots in industries worldwide is on the rise and robotic arms are the most successful robotic platform.
The course introduces students to the analysis and use of robot arms, by exposing them to the theoretical basis of robotics as well as their practical implementation. This course focuses on the kinematics, dynamics and control of robotic arms.
15 credits
Level 5
Second Term
The aim of the course is to give an overview of the different approaches to specify motions of industrial and mobile robots, up to autonomous robots that learn from their experiences. The course introduces students to the fundamentals of machine learning, which are relevant for robotics research and practice.
15 credits
Level 5
Second Term
Petrophysics, core analysis and formation evaluation are key disciplines in the oil and gas industry and renewable energy such as geothermal energy. It provides the main source of data on porosity, permeability and fluid saturations in the subsurface. Petrophysics is a crossroad discipline and petrophysicists work closely with geologists and petroleum engineers in exploration and production. This course provides essential information about petrophysics and core analysis and formation evaluation to allow petroleum engineers to interact effectively with geoscientists.
15 credits
Level 5
Second Term
Risk assessment, the common tools used for (and the legal requirement associated with) risk assessment are covered. Students will have a thorough understanding on the components of good assessment and management of risks, and be familiar with the basic requirement for HAZID, HAZOP, SIL, QRA and the Safety Case.
15 credits
Level 5
Second Term
Students will be introduced to delivery requirements for Intelligent Mobility (IM) projects, focused on underlying technology and data requirements. The class will address topics ranging from the development of IM business models, through to the application of information technology for purposes such as traffic control and information provision. Technology and data requirements for models such as Mobility as a Service (MaaS) will be considered to provide a holistic understanding of the requirements for IM service delivery.
15 credits
Level 5
Second Term
This course focusses on the management and operation of public transport (PT) systems. Management encompasses the organisation and control of PT systems. Operations relates to demand and supply with emphasis on the roles of subsidy, revenue and fares. Operations will be considered for: buses, trams, rail and metro. Appreciation of the interdependence of PT networks will be emphasised by a field trip to a UK metropolitan city. The trip involves a group field project and engagement with PT stakeholders with ‘behind the scenes’ access to operations and management environments.
15 credits
Level 5
Second Term
This course develops a theoretical and practical understanding of the use of modelling and simulation in the transport sector. Students will be introduced to the fundamentals of transport models, including travel demand models of trip generation, trip distribution, mode choice, and traffic assignment, along with the data handling practices necessary to allow their application. The overall aim is to develop an understanding of approaches to modelling the likely outcomes of transport engineering, planning and policy decisions.
15 credits
Level 5
Second Term
This course will introduce you to the key principles of ethical research in bioengineering, and cover core topics such as experiment design, basic statistical analysis, and how to review the scientific literature.
15 credits
Level 5
Second Term
Our bodies are shaped by the forces that act on them, and to understand movement, we need to understand the nature of that interaction. In this course, students will learn the basis of human movement in terms of the biomechanics of the musculoskeletal system. They will also appreciate the impacts that disease or injury can have on our ability to move, and gain insight into some of the technologies that can help improve function in people with movement disorders.
15 credits
Level 5
Second Term
Physiological and physicochemical phenomena in biological systems involve complex interactions between tissue, blood and nutrients such as glucose. This course will introduce the principles of biofluid and soft tissue mechanics, and mass transfer phenomena relevant to biological systems. Students will develop the ability to use mathematical modelling to analyse those phenomena, and gain insight into a range of therapies from the perspective of engineering.
15 credits
Level 5
Second Term
Smooth petroleum production requires an understanding of all technical disciplines in facility design and their deliverables as well as of specific new technologies. Competent facilities engineering is needed from concept selection to commissioning and maintenance.
Facilities engineering course focuses on equipment and systems from the well head to the delivery point of the oil and gas industry. This includes not only the processing of the oil and gas but the support systems which might include water treatment, power generation and pollution abatement.
15 credits
Level 5
Second Term
Offshore production of oil and gas requires transportation of the oil and gas from where it is produced to shipping vessels, storage tanks or refinery. The transportation is done using pipelines which are installed on the seabed. This course examines the engineering and scientific concepts that underpin the selection of the material and size of such pipelines as well as safe installation and operation. The environmental impact and the role played by the seabed profile are also discussed. Contribution from industry-based practicing engineers is used to inform students of current practices and technologies in subsea pipelines.
15 credits
Level 5
Second Term
There are many challenges during transport of oil and gas through pipelines. These challenges require a real grasp of the fundamentals in fluid mechanics, heat transfer, phase changes, deposition and/or obstruction, erosion and new technologies to ensure a reliable and cost effective provision of oil and gas. Deep water production, heavy oils, high water production, severe slugging, hydrates, sour gases, asphaltenes and waxes make this task even harder. This course will provide a detailed explanation of the topics, a well-balanced set of tutorials with real examples, invited lectures from experienced engineers and flow assurance specific software training.
15 credits
Level 5
Second Term
The course provides students with detailed knowledge of risers systems design considerations. Typical riser systems including flexible, steel catenary, hybrid and top tensioned riser systems are covered. The ocean environmental hydrodynamics and interactions between vessel, mooring and riser systems are also considered.
15 credits
Level 5
Second Term
The background to the finite element method and its use in various industrial applications is explained in this course. As well as the modelling of linear static and dynamic problems, the modelling of material and geometric non-linearity is an important aspect of the course. Coursework assignments will be based on the student edition of ABAQUS which is supplied with the Course Textbook which students are required to purchase.
15 credits
Level 5
Second Term
The world is full of uncertainties and there is a level of risk in every human activity, including engineering. Many industries require an engineer to manage significant risks and design for high reliability, such as oil and gas, subsea, nuclear, aviation and large civil projects (e.g. bridges and dams). To meet these engineering challenges and make rational decisions in the presence of uncertainty, this course will introduce students to methods and tools used by engineers to analysis risk and reliability.
15 credits
Level 5
Second Term
The course aims to give students knowledge and understanding of how larger process systems behave and are operated and controlled. Focus is being placed on the stability of feedback control loops and on advanced control strategies aiming at enhancing safety and operability. Specific cases across the safety hierarchy (basic and advanced process control, alarm systems, emergency shutdown and interlocks, etc) are addressed.
15 credits
Level 5
Second Term
Candidates will develop PIDs for major systems applying LOPA and including instrumentation. Inherently safe equipment layout principles for both onshore and offshore applications are addressed. Layouts will be developed for example applications.
The safety critical systems are reviewed and discussed.
Corrosion mechanisms are addressed together with materials for construction properties. Basic corrosion models are presented for a wide range of fluids. The operational modes which present most demand on materials are reviewed. Corrosion in erosive environments is addressed. Effects of temperature deviations in fire & blowdown are illustrated and analysed. Case studies are used to illustrate common issues.
15 credits
Level 5
Second Term
Human Factors Engineering (HFE) relates to how people interact with engineering systems. Failures in these areas are involved in all major incidents. Candidates explore them as part of this course. First, a review of major accidents will be undertaken to identify how equipment design, individual behaviours, and organisational behaviours contributed. Equipment/system design and the effect it has on individuals' behaviours is explored. Human Error is addressed. Finally, organisational behaviours will be examined. Leading and Lagging indicators are explored and their strengths/weaknesses considered. Candidates have the opportunity to complete practical assessments led by industry practitioners with specialist expertise in HFE.
15 credits
Level 5
Second Term
Decommissioning of oil and gas infrastructure is becoming a major issue for the North Sea and other mature basins. This course provides students with an overview of the stages of shutting down the production process and cleaning of the system and then the possible methods of removal of the structure.
15 credits
Level 5
Second Term
Decommissioning of oil and gas infrastructure is becoming a major issue for the North Sea and other mature basins. This course provides students with an insight into the process used to find the best decommissioning option for a particular installation, taking account of the complex interactions between, cost, technical feasibility, environmental and societal considerations and safety.
15 credits
Level 5
Second Term
This course will equip students with the required knowledge of offshore and subsea oil and gas production systems, and to enable them to gain an appreciation of the infrastructure and facilities that need to be removed during decommissioning.
60 credits
Level 5
Third Term
The MSc Individual Project is an independent piece of research based on a topic related to a student’s degree programme. Students are encouraged to focus on a problem confronting industry or a related area. The individual project provides students with an opportunity to demonstrate how the in-depth skills and knowledge they have gained during the taught courses can be used to provide solutions to practical problems. The individual project should contain a degree of original research.
60 credits
Level 5
Third Term
This course enables students to write a dissertation based on a subsea related topic of the student’s own choice. Students are encouraged to focus their dissertation on a problem confronting the Subsea industry.
60 credits
Level 5
Third Term
The MSc Individual Project is an independent piece of research based on a topic related to a student’s degree programme. Students are encouraged to focus on a problem confronting industry or a related area. The individual project provides students with an opportunity to demonstrate how the in-depth skills and knowledge they have gained during the taught courses can be used to provide solutions to practical problems. The individual project should contain a degree of original research.
We have detected that you are have compatibility mode enabled or are using an old version of Internet Explorer. You either need to switch off compatibility mode for this site or upgrade your browser.