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https://sustainabledevelopment.un.org/sdgs

Aligning with the SDGs — how are we helping?

* Landscape activities on the SDGs
e Can we categorise text to the SDG labels?

* Machine learning approach (neural network multi-label classification of
text) — ‘shallow’ deep learning



All models are wrong,
but some are useful



Unsupervised learning models are tools

* These are useful to categorise large ensemble of text
* Landscape the activities of a company
* Landscape the contributions of universities/departments
e Landscape learning outcomes of courses

* For precise/high resolution estimates, consult your friendly SDG researcher
* i.e., “is this particular article contributing more to SDG1 or SDG10?”
* i.e., “to which SDG target does this research objective contribute?”



End of disclaimer
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Training a deep-learning model

* Pipeline off Twitter
, * All tweets containing “sdgl” to “sdgl17”

* Censoring: keep only tweet mentioning one and only one sdg
* At moment ~ % million

 Text cleaning, emoticon/emoiji translation, deal with special
characters, stemming



Convolutional neural network - fitting

Convolution pooling
layers layers

TRAINING SET

PREDICTION

Scopus’

. 1l

VALIDATION SET

Validation

Accuracy ~96% on training set, ¥93% on validation set



‘shallow” deep-learning

* Current model ensemble:

* Trained on 80% of text and validated on 20% of text
* (blocked random sampling to ensure coverage of all sdgs)
* 1 CN, 1 max pooling layer, 3 full layers (including the last one outputting to
SDG labels) — tried up to >20 layers, simpler performs better.

 Fitting on multiple models (with variation on hyperparameters and replication
across validation set subsetting within models)

* Predictions on new text

* Retain predictions with confidence >90% (arbitrary + remember in ~7% of cases this
precise prediction will be inaccurate)

* Mode of retained label SDG prediction is the SDG category for the output
* conservative



Extracting ‘hidden’ features

e Categorise by pooling these features and maximising the retention of
features discriminating among categories

* Features: sequences of words
e Future: character-level sequence features (1million+ text)
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Trained model: prediction

“forest diversity is degraded by habitat loss”
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Trained model: prediction

“Call me Ishmael. Some years ago - never mind how long precisely - having little or no money in my purse, and nothing
Earticular to interest me on shore, | thought | would sail about a little and see the watery part of the world. It is a way |

ave of driving off the spleen and regulating the circulation. Whenever | find myself growing grim about the mouth;
whenever it is a damp, drizzly November in my soul; whenever | find myself involuntarily pausing before coffin warehouses,

and bringing up the rear of every funeral | meet; and especially whenever my hy
revent me from deliberately stepping into tt | ( .
igh time to get to sea as soon as | can. This is my substitute for pistol and ball. With a

requires a strong moral principle to E
people's hats off - then, | account it

e street, and met

EOS get such an upﬁer hand of me, that it
odically knocking

philosophical flourish Cato throws himself upon his sword; | quietly take to the ship. There is nothing surprising in this. If
they but knew it, almost all men in their degree, some time or other, cherish very nearly the same feelings towards the

ocean with me”
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Frequency

2000 4000 6000 8000 10000

0

UoA — probability of max SDG

~32k outputs, ~30sec on laptop

| I I | |
0.2 0.4 0.6 0.8 1.0

probability to belong to assigned SDG



Inference: CNN predictions
become observations

* What is the SDG landscape of a text
COrpus

* | would not have confidence to use it
for single output assessment

e | would not have confidence to use it
for sets of outputs with lower sample
size
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proportion of outputs classified with probability > 0.9
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Abstracts classitfied confidently by MUs

The others:

e Qutputs are SDG-related but model(s) fail to recognise it
e Qutputs are related to multiple SDGs
e Qutputs are not related to SDGs



proportion of outputs classified with probability > 0.9

Abstracts classified confidently by SDGs
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Why?

* Previous models performed much better for
SDG13

* Intuition (just that):

 The conversation has evolved around SDG13 —
harder to distinguish from other SDGs
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e All MUs contribute to multiple SDGs

e e.g., of course we are all educators
* Does this help highlight commonalities among MUs we did not know about?

* This largely discount inter-disciplinary work (often multiple SDGs) at
which we are pretty good

* This tells us about output volume not significance



UoA SDG Landscape —
high confidence outputs
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