
Improved Automated Marking of Student Programming Assessments
Nir Oren*, Greg Myers
University of Aberdeen

*contact author, email: n.oren@abdn.ac.uk

The Problem

Programming is an applied skill. While the effects of basic
programming constructs can easily be learned and
understood, the ability to apply this learning to solving a
computational task is more difficult to instil in students. Like
many other applied skills, practice and repetition are critical
to becoming a competent programmer.

In a University setting, limited marker resources are a major
obstacle to providing students with chances to practice their
programming. The standard practice in introductory
computing courses is to set students small formative
assessments to achieve simple tasks. Here, the only
feedback available is whether the task succeeds or fails.
These formative assessments are followed by one or two
larger summative assessments, where the student's ability is
evaluated and detailed feedback given.

We have found that the students who need the most help
typically "suffer in silence" once they start falling behind in
the formative assessments, and cannot hope to catch up by
the time the summative assessments come around. We
have also found that the amount of programming done by
students means that they do not have enough experience to
solve more difficult programming challenges in later years.
Finally, students often ignored the formative assessments.

To address these issues, we needed a way to provide
students with more summative assessments, without
increasing marking effort.

Automated Program Marking

CodeMarker is a web based tool for automated program
marking. CodeMarker allows a lecturer to set up
assessments, and enables students to repeatedly submit
their source code to be run against these assessments.

Codemarker tests student submission output for desirable
properties, and informs the student whether their submission
met, or did not meet, the submission requirements.

Outputs can be more than just a pass/fail - assessment
submission, execution and evaluation takes the form of a
program, enabling complex marking behaviours to be
created.

CodeMarker Features

For Assessors
•
• Set up an assessment, with start and finish times.
• Mark submissions written in many languages (Java, Ruby, Python

and C/C++ have all been tested).
• Keep track of source code submissions for audit purposes.
• Complex marking behaviours based on student program output.
• Allows both static and dynamically generated inputs and outputs to

submissions.

For Students

• Allows repeated submissions of source code.
• Instant feedback.

Miscellaneous

• Security provided via a virtual machine architecture that is wiped
after use.

CodeMarker Usage

The Department of Computing Science has used
CodeMarker in several first and second year courses. Its
use has allowed us to change our teaching style, providing
students with continuous programming assessments and
immediate feedback.

Codemarker has been used in both Introductory
programming courses and a more advanced Algorithmic
Problem Solving course, where imaginative thinking is
required in order to solve assessments.

Student Feedback has generally been positive, but no
formal assessment of CodeMarker as an intervention has
yet been performed.

• Student submits submission in response to an
assessment

• Codemarker starts up a new virtual machine
• Assessment is copied into virtual machine, as is the

submission
• Assessment is run

• Submission is compiled
• Program input is generated
• Desired output is generated

 from input
• Submission output is compared

 to desired output
• Feedback is returned

• Submission is compiled
• Program is run against a test case
• Feedback (results from test)

returned

Future Work

A wide list of future enhancements is planned, which will help assessors
(e.g. different assessment types), students (e.g. a library of feedback
which they can receive; improved user interface), and administrators
(improved scaling capability, integration with LDAP and the myAberdeen
infrastructure).

We are in discussions to roll out CodeMarker across the university, and
potentially to other higher academic institutions.

From a research perspective, Investigating the effects of CodeMarker
on student outcomes is one area of potential future work that could be
undertaken.

Workflow Outline

Acknowledgments
CodeMarker was originally conceived and Developed by Nir Oren, and then
reimplemented by Greg Myers and Chris Shanks

