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This paper examines the role of gradable properties in referring expressions, from

a perspective of natural language generation. Firstly, we propose a simple seman-

tic analysis of vague descriptions (i.e., referring expressions that contain grad-

able adjectives) that reflects the context-dependent meaning of the adjectives in

them. Secondly, we show how this type of analysis can inform algorithms for the

generation of vague descriptions from numerical data. Thirdly, we ask when such

descriptions should be used. The paper concludes with a discussion of salience

and pointing, which are analysed as if they were gradable adjectives.

1. Introduction: Vagueness of Gradable Adjectives

Vague descriptions. Vague or gradable expressions pose problems to models of lan-
guage, caused by their context-dependence, and by the fact that they are applicable
to different degrees. This paper focuses on gradable adjectives, also called degree adjec-
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tives.1 More specifically, we shall explore how referring expressions containing gradable
adjectives can be produced by a Natural Language Generation (NLG) program. Follow-
ing Pinkal (1979), such expressions will be called vague descriptions even though, as we
shall see, the vagueness of the adjective does not extend to the description as a whole.
It will be useful to generalise over different forms of the adjective, covering the superla-
tive form (e.g., ‘largest’) and the comparative form (‘larger’), as well as the positive or
base form (‘large’) of the adjective. Vague descriptions are worth studying because they
use vagueness in a comparatively transparent way, often combining clarity of reference
with indeterminacy of meaning; as a result, they allow us to make inroads into the diffi-
cult area of research on vagueness. Generation offers an interesting perspective because
it forces one to ask when it is a good idea to use these descriptions, in addition to asking
what they mean.

Gradability is especially widespread in adjectives. A search of the British National Cor-
pus BNC, for example, shows at least seven of the ten most frequent adjectives (last,
other, new, good, old, great, high, small, different, large) to be gradable. Children use
vague adjectives among their first dozens of words (Peccei 1994) and understand some
of their intricacies as early as their 24th month (Ebeling and Gelman 1994). These intri-
cacies include what they call Perceptual context-dependence, as when a set of objects
is perceptually available and the adjective is applied to an element or subset of the set
(e.g., ‘Is this hat big or is it little?’, when two hats of different sizes are visible).

Vagueness in NLG. Some NLG systems produce gradable adjectives. The FOG weather-
forecast system, for example, uses numerical input (Rain(Tuesday) = 45mm) to gen-
erate vague output (‘Heavy rain fell on Tuesday’, Goldberg 1994). FOG does not appear
to have generic rules governing the use of gradable notions: it does not compute the
meaning of a vague term based on the context, but uses fixed boundary values instead.
A more flexible approach is used by Reiter and Sripada (2002), where users can specify
boundary values for attributes like rainfall, specifying for example that rain counts as
moderate above 7mm p/h, as heavy above 20mm p/h, and so on. A third approach was
implemented in Dial Your Disc (DYD), where the extension of a gradable adjective like
‘famous’ was computed rather than specified by hand (van Deemter and Odijk 1997).
To determine, for example, whether one of Mozart’s piano sonatas could be called ‘a
famous sonata’, the system looked up the number x of Compact Disc recordings of
this sonata (as listed in an encyclopaedia) and compared it to the average number y of
CD recordings of each of Mozart’s sonatas. The sonata was called a famous sonata if
x >> y. Like DYD, the work reported in this paper will abandon the use of fixed bound-
ary values for gradable adjectives, letting these values depend on the context in which
the adjective is used.

Sometimes we are forced to be vague because our information itself (e.g., based on per-
ception or verbal reports) is inexact. Such cases can be modelled by letting NLG systems
take vague information (e.g., Rain(Wednesday) = heavy) as their input. We shall fo-
cus on the more challenging case where the output of the generator is less precise than
the input, as is the case in FOG and DYD. This can be a hazardous affair, since vague
expressions tend to be interpreted in different ways by different people (Toogood 1980),

1 We take such adjectives to be ones that have comparative and

superlative forms, and which can be premodified by intensifiers such

as ‘very’ (Quirk et al. 1972, section 5.4).
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sometimes in stark contrast with the intention of the speaker/writer (Berry et al. 2002).
We shall therefore focus – unlike earlier computational accounts – on vague descriptions,
that is, vague expressions in definite descriptions. Here, the context tends to obliterate
the vagueness associated with the adjective. Suppose you enter a vet’s surgery in the
company of two dogs: a big one on a leash, and a tiny one in your arms. The vet asks
‘Who’s the patient?’, and you answer ‘the big dog’. This answer will allow the vet to
pick out the patient just as reliably as if you had said ‘the one on the leash’; the fact that
‘big’ is a vague term is irrelevant. You omit the exact size of the dog, just like some of
its other properties (e.g., the leash), because they do not improve the description. This
shows how vague properties can contribute to the precise task of identifying a referent.

Plan of this paper. We will show how existing algorithms for the Generation of Re-
ferring Expressions (GRE) can do justice to gradable properties, whether they originate
from the gradable adjectives in a vague description, or from some entirely different
source (such as the degree of salience of the referent). Considerable attention will be
paid to the many open questions in this area, which will have to be resolved before NLG
can be said to contain a proper treatment of vague expressions. We start with two pre-
liminary sections, containing a semantic analysis of vague descriptions (section 2) and
a version of the Incremental Algorithm that generates references to sets (section 3). Sec-
tion 4 describes the core of one particular algorithm for generating vague descriptions.
Section 5 discusses pragmatic constraints that let such an algorithm avoid descriptions
that are semantically correct but clumsy. Section 6 discusses Linguistic Realisation. Sec-
tion 7 summarises some empirical results. Section 8 explores non-incremental versions
of our algorithm. Section 9 shows how our approach can be extended to include nouns,
salience, and pointing. Section 10 sums up our main findings.

2. The Meaning of Vague Descriptions

Linguistic motivation. We shall be studying vague descriptions of various forms: they
may or may not contain a numeral n (positioned before or after the adjective); and the
gradable adjective (Adj) may at least be in base (‘large’) or superlative form (‘largest’):

1. The (n) Adj(est) N (singular/plural)
2. The Adj(est) (n) N (singular/plural).

If Adj is in the base form, we focus on the word order (1); if Adj is superlative, we focus
on (2). (Little will hinge on this decision.) We are limiting ourselves to referential uses
of these expressions, excluding cases like ‘This must be the largest tree in the world’, in
which the expression ascribes a property to an already-identified object. Likewise, we
exclude intensional ones (e.g., ‘Consider the smallest element of this set’, in a mathematical
proof, when the identity of the element may not be known).

Many different analyses are possible of what it means to be large: larger than average,
larger than most, larger than some given baseline, and so on. It is doubtful that any one
of these analyses makes sense for all definite descriptions. To see this, consider a domain
of three mice, sized 5cm, 8cm, 10cm.2 Here one can speak of

2 The reader is asked to focus on any reasonable size measurement, e.g.,

the maximal horizontal or vertical distance, or some combination of

dimensions (Kamp 1975; also section 8.1 of the present paper).
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3. The large mouse (= the one whose size is 10cm).
4. The two large mice (= the two whose sizes are 8 and 10cm).

Clearly, what it takes for the adjective to be applicable has not been cast in stone, but is
open to fiat: the speaker may decide that 8cm is enough, or she may set the standards
higher (cf., Kennedy 1999.) The numeral (whether it is implicit, as in (3), or explicit) can
be construed as allowing the reader to draw inferences about the standards employed
(Kyburg and Morreau 2000, DeVault and Stone 2004): (3), for example, implies a stan-
dard that counts 10cm as large and 8cm as not large. Our own proposal will abstract
away from the effects of linguistic context. We shall ask how noun phrases like the ones
in (3) and (4) can be generated, without asking how they constrain, and are constrained
by, other uses of ‘large’ and related words. This will allow us to make the following sim-
plification: in a definite description that expresses only properties that are needed for
singling out a referent, we take the base form of the adjective to be semantically equiva-
lent with the superlative form (and, analogously, the comparative):

The n large mice = The largest n mice
The large mice = The largest mice
The large mouse = The largest mouse.

Viewed in this way, gradable adjectives are an extreme example of the ‘efficiency of
language’ (Barwise and Perry 1983): far from meaning something concrete like ‘larger
than 8cm’ – a concept that would have very limited applicability – or even something
more general like ‘larger than the average N’, a word like ‘large’ is applicable across a
wide range of different situations.

Caveat: Full NP anaphora. Having said this, there are pragmatic differences between the
base form and the superlative (section 5). For example, the equivalence does not take
anaphoric uses into account, such as when ‘the large mouse’ is legitimised by the fact
that the mouse has been called ‘large’ before, as in

5. I was transfixed by a large mouse on the chimney; then suddenly, dozens
of mice were teeming on the ground. The large mouse was running away.,

where the mouse on the chimney may be smaller than those on the ground. We focus on
Ebeling and Gelman’s (1994) perceptual context dependence (section 1), pretending that
the only contextually relevant factor is the ‘comparison set’: those elements of the noun
denotation that are perceptually available. We disregard functional context-dependence,
as when ‘the small hat’ is the one too small to fit on your head.

Caveat: Evaluative adjectives. What we wrote has also disregarded elements of the
‘global’ (i.e., not immediately available) context. For some adjectives, including the ones
that Bierwisch called evaluative (as opposed to dimensional), this is clearly inadequate.
He argued that evaluative adjectives (such as ‘beautiful’ and its antonym ‘ugly’; ‘smart’
and its antonym ‘stupid’, etc.) can be recognised by the way in which they compare with
antonyms. For example (after Bierwisch 1989),

6a. ‘Hans is taller than Fritz’ ⇒ ‘Fritz is shorter than Hans’.
6b. ‘Hans is smarter than Fritz’ 6⇒ ‘Fritz is more stupid than Hans’.

We could require that the referent of an evaluative description falls into the correct seg-
ment of the relevant dimension. (For Fritz to be ‘the stupid man’, it is not enough for
him to be the least intelligent male in the local context; he also has to be a fairly stupid
specimen in his own right.) If this is done, it is not evident that dimensional adjectives
should be treated differently: If Hans’ and Fritz’ heights are 210cm and 205cm respec-
tively, then it seems questionable to describe Fritz as ‘the short man’, even if Hans is the
only other man in the local context (but see Sedivy et al. 1999, discussed in section 7.2).
Be this as it may, we shall henceforth focus on local context, assuming that additional

4



van Deemter GRE with gradable properties

requirements on the global context can be made if necessary.

With these qualifications in place, let us say more precisely what we will assume the dif-
ferent types of expressions to mean. For ease of reading, concrete examples (e.g., ‘large’)
will replace abstract labels (e.g., ‘Adj’), but the analysis is meant to be general.

‘The largest n mouse/mice’; The n large mice. Imagine a set C of con-
textually relevant animals. Then these noun phrases (NPs) presuppose
that there is a subset S of C that contains n elements, all of which are
mice, and such that (1) C − S 6= � (i.e., not all elements of C are ele-
ments of S) and (2) every mouse in C − S (i.e., every contextually rele-
vant mouse not in S) is smaller than every mouse in S. If such a set S
exists then the NP denotes S. The case where n = 1, realised as ‘The
large(st) mouse’, falls out automatically.

‘The large(st) mice’. This account can be extended to cover cases of the
form ‘The [Adj]-(est) [Npl]’ (pl = plural), where the numeral n is sup-
pressed: they will be taken to be ambiguous between all expressions
‘The [Adj]-(est) n [Npl]’, where n > 1. Sometimes, this leaves only one
possibility. For instance, in a domain where there are five mice, of sizes
4, 4, 4, 5, and 6cm, the only possible value of n is 2, causing the NP to
denote the two mice of 5 and 6cm size.

Pragmatic refinements are discussed in section 5. Our analysis is limited to NPs that
contain only one vague adjective. Doubly-graded descriptions tend to cause ambigu-
ity, since they involve a trade-off between several dimensions. An NP like ‘the tall fat
giraffe’, for example, might be describe a referent that is neither the tallest nor the fat-
test giraffe, as long as a combination of height and fatness singles it out. Some of the
problems that come up in such cases will be discussed in section 9.1.

3. Generation of Crisp Descriptions

Arguably the most fundamental task in Generation of Referring Expressions (GRE),
called Content Determination (CD) is finding a set of properties which jointly identify
the intended referent. Various CD algorithms have been proposed, most of which ap-
proximate the minimal number of properties that are needed to identify the target. Ap-
proximations differ in terms of their computational complexity and the degree to which
they match the way in which people use referring expressions (see Dale and Reiter 1995
for a survey). As we shall see in section 8, any one of these algorithms could be used as
a basis for our task. For concreteness, we focus here on Dale and Reiter’s Incremental
Algorithm (IA for short). We shall use a form of the IA that can refer to sets as well as
individuals, as long as the sets are individuated via their elements (i.e., distributively,
as opposed to collectively, cf., Stone 2000). This version of the IA will be called IAPlur.
(For motivation and extensions, see van Deemter 2000, 2002.)

The Incremental Algorithm. Put simply, IA accumulates semantic properties until the
target objects are the only ones in the domain of which all the accumulated properties
are true. This can be done by arranging the properties in a list, and by checking, for
each property in the list, whether it is useful (in the sense that it removes one or more
distractors); if a property is useful, it is included in the description, after which the next
property is given the same treatment. This process of checking and including goes on
until the target objects are the only ones of which all the properties in the list are true
(i.e., until there are no distractors left).

For reasons that will become apparent later, we complicate matters slightly: following
Dale and Reiter, we view each property as consisting of an Attribute (e.g., colour) and
a Value (e.g., white), written 〈Attribute,Value〉. (Attributes can be viewed as grouping
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together a number of related properties.) Attributes are ordered in a list A, and this pref-
erence order determines the order in which properties are examined (and possibly added
to the description) by the algorithm. Suppose S is the target set, and C the set of all ob-
jects that play a role at a given stage of the algorithm (we call these the confusables).
The algorithm iterates through A; for each Attribute, it checks whether, by specifying a
Value for it, one can rule out at least one member of C that has not yet been ruled out; if
so then the Attribute is added to a set L, with the best possible Value (as determined by
FindBestValue). Confusables that are ruled out are removed from C. The expansion
of L and the contraction of C continue until C = S:

L := �

C := Domain
For each Ai ε A do

Vi = FindBestValue(S, Ai)

If S ⊆ [[ 〈Ai, Vi〉 ]] & C 6⊆ [[ 〈Ai, Vi〉 ]] then do

L := L ∪ {〈Ai, Vi〉}
C := C ∩ [[ 〈Ai, Vi〉 ]]
If C = S then Return L

Return Failure

FindBestValue selects the ‘best value’ from amongst the Values of a given Attribute,
assuming that these are linearly ordered in terms of specificity. The function selects the
Value that removes most distractors, but in case of a tie, the least specific contestant is
chosen, as long as it is not less specific than the basic-level Value (i.e., the most com-
monly occurring and psychologically most fundamental level, Rosch 1987). IAPlur can
refer to individuals as well as sets, since reference to a target individual r can be mod-
elled as reference to the singleton set {r}.

Existing treatment of gradables. IAPlur deals with vague properties in essentially the
same way as FOG: Attributes like size are treated as if they were not context depen-
dent: their Values always apply to the same objects, regardless of what other proper-
ties occur in the description. In this way, IA could never describe the same animal as
‘the large chihuahua’ and ‘the small brown dog’, for example. This approach does not
do justice to gradable adjectives, whether they are used in the base form, the superla-
tive, or the comparative. Suppose, for example, one set a fixed quantitative boundary,
making the word ‘large’ true of everything above it, and false of everything below it.
Then IA would tend to have little use for this property at all since, presumably, every
chihuahua would be small and every alsacian large, making each of the combinations
{large, chihuahua} (which denotes the empty set) and {large, alsacian} (the set of all al-
sacians) useless. In other words, existing treatments of gradables in GRE fail to take the
‘efficiency of language’ into account (Barwise and Perry 1983, see our section 2).

4. Generation of Vague Descriptions

We now turn to the question how vague descriptions may be generated from numerical
data. We focus on semantic issues, postponing discussion of Pragmatics until section 5,
and Linguistic Realisation until section 6. We shall make occasional reference to a PRO-
LOG program called VAGUE, designed by Richard Power, which implements a version
of the algorithm descibed in this section. Code and documentation of VAGUE can be
found at http://www.csd.abdn.ac.uk/∼kvdeemte/vague.html.

4.1 Expressing one vague property
Numerical properties. We shall assume that gradable properties are stored in the
Knowledge Base (KB) as Attributes with (decimal) numerical Values, where the num-
bers can be the result of physical measurements. We will sometimes speak of these nu-
merical Values as if they represented exact Values even though they typically represent
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approximations.3 For concreteness, we shall take them to be of the form n cm, where n
is a positive real number. For example,

type = rodent, mouse
colour = black, blue, yellow
size = 3cm, 4cm,..., 10cm.

Making use of this KB, the IA is able to generate a description involving a list of prop-
erties like L = {yellow,mouse,9cm}, for example, exploiting the Attribute size. The
result could be the NP ‘The 9-cm yellow mouse’, for example. The challenge formu-
lated in section 1, however, is to avoid unnecessary precision, by avoiding numerical
values unless they are necessary for the individuation of the target. This challenge will
be answered using a replacement strategy. Numerical Values such as 9cm, in L, will be
replaced by a superlative Value (‘being the unique largest element of C’) whenever all
distractors happen to have a smaller size. This list can then be realised in several ways,
using either the superlative, the comparative, or the base form (e.g., ‘The largest yellow
mouse’, ‘The larger yellow mouse’, or ‘The large yellow mouse’).

Exploiting numerical properties, singular. To (almost4) ensure that every description
contains a property expressible as a noun, we shall assume that the type Attribute is
more highly preferred than all others. Suppose also, for now, that properties related to
size are less preferred than others. As a result, all other properties that turn up in the
NP are already in the list L when size is added. Suppose the target is c4:

type(c1)=type(c2)=type(c3)=type(c4)=mouse
type(p5)=rat
size(c1)=6cm
size(c2)=10cm
size(c3)=12cm
size(c4)=size(p5)=14cm

Since gradable properties are (for now at least) assumed to be dispreferred, the first
property that makes it into L is ‘mouse’, which removes p5 from the context set. (Result:
C = {c1, ..., c4}.) Now size is taken into account, and size(x) = 14cm singles out c4.
The resulting list is

L = {mouse, 14cm}

This might be considered the end of the matter, since the target has been singled out. But
we are interested in alternative lists, to enable later modules to use gradable adjectives.

3 The degree of precision of the measurement (James et al. 1996, section

1.5) determines which objects can be described by the GRE algorithm,

since it determines which objects count as having the same size.

4 To turn this likelihood into a certainty, one can add a test at the end of

the algorithm, which adds a type-related property if none is present

yet (cf., Dale and Reiter 1995). VAGUE uses both of these devices.
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One way in which such a list can be computed is as follows. Given that 14cm happens to
be the greatest size of any mouse, size(x) = 14cm can be replaced, in L, by the property
of ‘being the sole object larger than all other elements of C’ (notation: size(x) = max1;
note that C is the set of mice). Since this property is only applicable because of the
properties earlier-introduced into L, it becomes essential that L is an ordered list:

L = 〈mouse, size(x) = max1〉 (‘the largest mouse’)

Exploiting numerical properties, plural. If plural descriptions were generated using
the replacement strategy sketched above, it would be impossible to characterise sets
whose elements have different sizes. To make this possible, we have to use inequalities,
that is, Values of the form ‘> α’ or ‘< α’, instead of Values of the form ‘= α’. Therefore,
we compile the KB into a more elaborate form by replacing equalities by inequalities of
the form size(x) > α or size(x) < α. The new KB can be limited to relevant inequalities
only: for every n such that the old KB contains an equality of the form size(x) = n cm,
the new KB contains all those inequalities whose truth follows from the equalities in the
old KB. For example,

size(c4), size(p5) > 12 cm
size(c3), size(c4), size(p5) > 10 cm
size(c2), size(c3), size(c4), size(p5) > 6 cm,

where ‘size’ is an Attribute, ‘> 12 cm’, ‘> 10 cm’, and ‘> 6 cm’ are Values, and c2, c3,
c4, c5, p5 are domain objects of which a given 〈Attribute, Value〉 combination is true. The
procedure is analogous to the treatment of negations and disjunctions in Van Deemter
(2002): properties that are implicit in the KB are made available for GRE.

The representation of inequalities is not entirely trivial. For one thing, it is convenient
to view properties of the form size(x) < α as belonging to a different Attribute than
those of the form size(x) > α, because this causes the Values of an Attribute to be
linearly ordered: being larger than 12cm implies being larger than 10cm, and so on.
More importantly, it will now become normal for an object to have many Values for the
same Attribute; c4, for example, has the Values > 6cm, > 10cm, and > 12cm. Each of
these Values has equal status, so the notion of a basic-level Value cannot play a role (cf.,
Dale and Reiter 1995). If we abstract away from the role of basic-level Values, then Dale
and Reiter’s FindBestValue chooses the most general Value that removes the max-
imal number of distractors, as we have seen. The problem at hand suggests a simpler
approach which will always prefer logically stronger inequalities over logically weaker
ones, even when they do not remove more distractors.5 (Thus, size(x) > m is preferred
over size(x) > n iff m > n; conversely, size(x) < m is preferred over size(x) < n
iff m < n.) This is reflected by the order in which the properties are listed above: once
a size-related property is selected, later size-related properties do not remove any
distractors and will therefore not be included in the description.

Let us return to our example. Suppose the target set S is {c3, c4}. The KB models its
two elements as having different sizes (12cm and 14cm, respectively), hence they do
not share a property of the form size(x) = α. They do, however, share the property
size(x) > 10cm. This property is exploited by IAPlur to construct the list

L1 = 〈mouse, >10cm〉,

5 A statement p is logically stronger than q if p has q as a logical

consequence (i.e., p |= q) while the reverse is not true (i.e., q 6|= p).
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first selecting the property ‘mouse’, then the property size(x) > 10cm. (The property
size(x) > 12cm is attempted first but rejected.) Since L succeeds in distinguishing the
two target elements, it follows that they are the only mice greater than 10cm. Conse-
quently, this inequality can be replaced by the property ‘being a set of cardinality 2,
whose elements are larger than all others’ (notation: size(x) = max2), leading to NPs
such as ‘the largest (two) mice’:

L2 = 〈mouse, size(x) = max2〉.

Note that size(x) = max2 is true of a pair of mice: strictly speaking, the step from L1 to
L2 translates a distributive property (‘being larger than 10cm’) into a collective one. The
case in which the numeral is 1 corresponds with the singular (e.g., ‘the largest mouse’).
Optionally, we can go a step further and replace size(x) = max2 by the less specified
property size(x) = max, which abbreviates ‘being a set of cardinality greater than 1, all
of whose elements are larger than all other elements in C’. The result may be realised as
‘the largest mice’.

L3 = 〈mouse, size(x) = max〉.

Ordering of properties. Even if comparative properties are at the bottom of the pref-
erence order, while stronger inequalities precede weaker ones, the order is not fixed
completely. Suppose, for example, that the KB contains information about height as
well as width, then we have inequalities of the forms (a) height > x, (b) height < x,
(c) width > x, and (d) width < x. Which of these should come first? Hermann and
Deutsch (1976; also reported in Levelt 1989) show that greater differences are most likely
to be chosen, presumably because they are more striking. In experiments involving can-
dles of different heights and widths, if the referent is both the tallest and the fattest can-
dle, subjects tended to say ‘the tall candle’ when the tallest candle is much taller than
all others while the same candle is only slightly wider than the others; if the reverse is
the case, the preference switches to ‘the fat candle’. Hermann and Deutsch’s findings
may be implemented as follows. Firstly, the Values of the different Attributes should be
normalised to make them comparable. Secondly, preference order should be calculated
dynamically (i.e., based on the current value of C, and taking the target into account),
preferring larger gaps over smaller ones. (It is possible, for example, that width is most
suitable for singling out a black cat, but height for singling out a white cat.) The rest of
the algorithm remains unchanged.

Beyond Content Determination. Assuming the analysis of section 2.1, ‘The n large
mouse/mice’ is semantically equivalent to ‘The n largest mouse/mice’. Consequently,
there is no need to distinguish between the two at the level of CD. Representations like
the ones in L2 and L3 are neutral between the superlative and the base form. Pragmatic
constraints determine which of these expressions (‘the (n) largest, ‘the (n) larger’, ‘the
(n) large’) is most appropriate in a given situation. (Section 5.)

Inference. The replacement strategy, whereby one list of properties is transformed into
another, is essentially a simple kind of logical inference. L1 and L2, for instance, are
guaranteed to single out the same set, given that exactly two mice are larger than 10cm;
given the content of the KB, the two lists are co-extensive. Once the numeral is dropped,
however, as in L3, there is real loss of information: L3 can be used for characterising
a number of sets, including the one characterised by L2. In any case, the properties in
these lists are logically distinct, so the choice between them belongs to CD.

4.2 Expressing several vague properties
If the KB contains several gradable Attributes, a description can make use of several of
them (7). Even if only one gradable Attribute is represented, descriptions may contain
different adjectives, expressing opposites (8).
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7. The tallest two of the smallest three mice.
8 The mice that are taller than 2cm but shorter than 4cm.

(The latter may be better expressed as The mice that are between 2 and 4cm tall.) Let us see
how the algorithm of the previous sections can be extended to these cases.

Descriptions using (in)equalities. When opposites are part of the KB, there is no need
for representing equalities separately, since they arise automatically, as combinations of
opposites. Every equality of the form ‘size(x) = m cm’ is equivalent to the combination
of a property of the form ‘size(x) > i cm’ and one of the form ‘size(x) < j cm’.
Given the content of the following KB, for example, saying that the size of an object is
between 6cm and 12cm amounts to saying that its size is 10cm, and this is implemented
by adding appropriate transformations to the generator.

size(c1) < 10 cm
size(c1), size(c2) < 12 cm
size(c1), size(c2), size(c3) < 14 cm
size(c4), size(p5) > 12 cm
size(c3), size(c4), size(p5) > 10 cm
size(c2), size(c3), size(c4), size(p5) > 6 cm

Different measures have to be taken when several vague Attributes are involved. Sup-
pose height has these Values:

height(c1) = 7 cm
height(p5) = 8 cm
height(c3) = 9 cm
height(c2) =height(c4) = 10 cm.

After recompiling these into the form of inequalities (reiterating types):

type(c1)=type(c2)=type(c3) =type(c4)=mouse
type(p5)=rat

height(c1) < 8 cm
height(c1), height(p5) < 9 cm
height(c1), height(c3), height(p5) < 10 cm

height(c2), height(c4) > 9 cm
height(c2), height(c3), height(c4) > 8 cm
height(c2), height(c3), height(c4), height(p5) > 7 cm

Suppose the target set is {c2, c3}. The algorithm will first select the property mouse,
since crisp properties are more preferred than vague ones. (Result: C = {c1, c2, c3, c4}).
The sequel depends on preference order. Omitting the property of being a mouse for
brevity, possible results include the following:

(a) La = 〈 size < 14 cm , height > 8 cm 〉, to be realised as, e.g., ‘the
mice taller than 8cm but smaller than 14cm’.
(b) Lb = 〈 height > 8 cm, size > 6 cm, < 14 cm 〉, e.g., ‘the mice that
are taller than 8cm and sized between 6 and 14cm’.

Analogous to section 4.1, one might stop here. But there is scope here for logical infer-
ence, even more so than before; likewise, there are pitfalls, more than before.

Adjectives in superlative and base form. To generate descriptions like the ones in ex-
amples (7, 8), we need to transform a comparative property into a superlative property,
moving from properties of the form ‘height > x’ to properties of the form ‘the tallest
n’. This can be done in different ways. For example, La may give rise to

10



van Deemter GRE with gradable properties

(i) 〈 size < 14 cm, height(x) = max2〉,
(‘The tallest two of the mice that are smaller than 14cm’)
(ii) 〈 size(x) = min3, height(x) = max2〉
(‘The tallest two of the smallest three mice’)

Once we know which of these outcomes is preferable, the algorithm may be finetuned.
(If brevity is an issue, for example, then one might let a generation program vary the
preference order used by the IA, then choose the outcome that is shortest.) The trans-
formations described so far rest on logical equivalence (modulo the KB). If numerals are
omitted as well, the result is usually no longer equivalent of course, and the description
is at risk of becoming almost entirely uninformative (e.g. L2):

L1 = 〈 size(x) = min3, height(x) = max〉
L2 = 〈 size(x) = min, height(x) = max〉

The algorithm outlined in this and the previous section can be summarised as follows:

GRE for Vague Descriptions (using IA):

1. Construct KB using Attributes and Values, assigning numerical Values to Gradable
Attributes.

2. Recompile the KB, replacing equalities by inequalities, for all gradable Attributes.

3. Determine the preference order between the different groups of Attributes. (A safe
approach is to give all gradable Attributes lower preference than all non-gradable ones.)

4. Run IAPlur (section 3.2), resulting in a list of properties that jointly identify the target.

5. Apply inferences to the list of properties. For example replace combinations of
inequalities by one exact Value; replace inequalities by properties that involve a
cardinality; and so on.

6. Perform Linguistic Realisation (section 6).

If gradable properties are less preferred than crisp ones (point 3) then this algorithm will
only use gradable properties if an entirely crisp distinguishing description is impossible.
This may well cause gradable properties to be under-used. For this and other reasons,
we shall consider non- incremental versions of these ideas in section 8.

4.3 Computational Complexity
We will examine the worst-case complexity of interpretation as well as generation, to
shed some light on the hypothesis that vague descriptions are more difficult to process
than others, because they involve a comparison between objects (Beun and Cremers
1998, Krahmer and Theune 2002). Before we do this, consider the tractability of the
original IA. If the running time of FindBestValue(r, Ai) is a constant times the num-
ber of Values of the Attribute Ai, then the worst-case running time of IA (and IAPlur) is
O(nvna), where na equals the number of Attributes in the language and nv the average
number of Values of all Attributes. This is because, in the worst case, all Values of all At-
tributes need to be attempted (Van Deemter 2002). As for the new algorithm, we focus
on the crucial phases 2, 4 and 5.

Phase 2: Recompilation of the KB forces one to compare all domain elements with each
other. This takes at most quadratic time (i.e., O(n2), where n is the number of elements
in the domain). This can be done off line, once and for all.

Phase 4: Content Determination. The initial list of properties, which contains inequali-
ties, (e.g., L = 〈 mouse, > 5cm 〉) is calculated by IAPlur. The algorithm has to take more
Attribute/Value pairs into account as a result of the recompilation of the KB), but this
does not change its theoretical complexity (using nv and na as variables): it is O(nvna).

Phase 5: Inference. The only inference step described so far replaces an inequality (e.g.,
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height > ncm) by a ‘superlative’ property (e.g., height = max2). This step requires
no computation to speak of: for any given inequality that appears in the description,
the value of m can be read off the input to the generator in O(nd) steps, where nd is
the number of distractors. (This comes down to counting the number of elements in the
extension of the inequality.) Therefore, if the number of inequalities in the description is
ni then the complexity is O(ndni).

Thus, the complexity of GRE in the gradable case is determined by three steps: the first
is quadratic and can be performed off line; the second has a worst-case running time
of O(nvna), and the third one has a worst-case running time of O(ndni). Thus, gradable
GRE takes only polynomial time, and if we focus on the part that cannot be done off
line, it takes only linear time. In other words, gradable GRE does take more time than
non-gradable GRE, but the difference seems modest.

The intuition that vague descriptions are more difficult than others is also confirmed
(though again only to a modest extent) when we focus on the hearer. First, consider a
non-vague description consisting of a combination of n properties, P1, ..., Pn. To discover
its referent, the denotation of the Boolean expression P1 ∩ .. ∩ Pn needs to be calculated,
which takes just n − 1 calculations of the form

Intersect ‖P1‖ ∩ ... ∩ ‖Pi−1‖ (a set which has been computed already)
with ‖Pi‖ (the extension of the next property in the description).

If computing the intersection of two sets takes constant time then this makes the com-
plexity of interpreting non-vague descriptions linear: O(nd), where nd is the number
of properties used. In a vague description, the property last added to the description
is context-dependent. Worst case, calculating the set corresponding with such a prop-
erty, of the form size(x) = maxm for example, involves sorting the distractors as to
their size, which may amount to O(n2

d) or O(nd log nd) calculations (depending on the
sorting algorithm, (Aho et al. 1983). Once again, the most time-consuming part of the
calculation can be performed off line, since it is the same for all referring expressions.

Thus, the worst-case time complexity of interpretation is as follows: the part that can be
computed off line takes O(nd log nd) calculations. The part that has to be computed
for each referring expression separately takes O(nd) calculations. Once again, there is a
difference with the non-gradable case, but the difference is modest, especially regarding
the part that cannot be done off line. One should bear in mind that worst-case theoret-
ical complexity is not always a good measure of the time that a program takes in the
kinds of cases that occur most commonly, let alone the difficulty for a person. For ex-
ample, it seems likely that hearers and speakers will have most difficulty dealing with
differences that are too small to be obvious (e.g., two mice that are very similar in size).

5. Pragmatic Constraints

NLG has to do more than select a distinguishing description (i.e., one that unambigu-
ously denotes its referent, Dale 1989): the selected expression should also be felicitous.
Consider the question, discussed in the philosophical logic literature, whether it is le-
gitimate, for a gradable adjective, to distinguish between ‘observationally indifferent’
entities: Suppose two objects x and y are so similar that it is impossible to distinguish
their sizes; can it ever be reasonable to say that x is large and y is not? A positive answer
would not be psychologically plausible, since x and y are indistinguishable; but a neg-
ative answer would prohibit any binary distinction between objects that are large and
objects that are not, given that one can always construct objects x and y one of which
falls just below the divide while the other falls just above it. This is the strongest version
of the sorites paradox (e.g., Hyde 2002).
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Our approach to vague descriptions allows a subtle response: that the offending state-
ment may be correct yet infelicitous. This shifts the problem from asking when vague
descriptions are ‘correct’ to the question when they are used felicitously. Felicity is nat-
urally thought of as a gradable concept. There is therefore no need for a generator to
demarcate precisely between felicitous and infelicitous expressions, as long as all the
utterances generated are felicitous enough. When in doubt, a generator should avoid
the expression in question. If x and y are mice of sizes 10cm and 9.9cm, for example,
then it is probably better to describe x as ‘the largest mouse’ than as ‘the large mouse’.

Prior to carrying out the experiments to be reported in section 7, we believed that the
following constraints should be taken into account:

Small Gaps. Expressions of the form ‘The (n) large [N]’ are infelicitous when
the gap between (1) the smallest element of the designated set S (henceforth,
s−) and (2) the largest N smaller than all elements of S (henceforth, s+) is small
in comparison with the other gaps (Thorisson 1994, Funakoshi et al. 2004). If
this gap is so small as to make the difference between the sizes of s− and s+

impossible to perceive, then the expression is also infelicitous.

Dichotomy. When separating one single referent from one distractor, the
comparative form is often said to be favoured (‘Use the comparative form to
compare two things’). We expected this to generalise to situations where all the
referents are of one size, and all the distractors of another.

Minimality. Unless Small Gaps and Dichotomy forbid it, we expected that
preference should be given to the base form. In English, where the base form is
morphologically simpler than the other two, this rule could be argued to
follow from Gricean principles (Grice 1975).

To keep matters simple, Linguistic Realisation could choose the base form if and only if
the gap between s− and s+ surpasses a certain value, which is specified interactively by
the user. (This approach was chosen for the VAGUE program.)

As for the presence/absence of the numeral in the description, there appear to be differ-
ent ‘believable’ patterns of linguistic behaviour. A cautious generator might only omit
the numeral when the pragmatic principles happen to enforce a specific extension (e.g.,
‘the large mice’, when the mice are sized 3cm, 2.8cm, 2.499cm, and 2.498cm). This would
allow the generator to use vague expressions, but only where they result in a descrip-
tion that is itself unambiguous.

We shall see in section 7 that it has not been easy to confirm the pragmatic constraints
of the present section experimentally.

6. Linguistic Realisation

Some recent GRE algorithms have done away with the separation between Content De-
termination and Linguistic Realisation, interleaving the two processes instead (Stone and
Webber 1998, Krahmer and Theune 2002). We have separated the two phases because,
in the case of vague descriptions, interleaving would tend to be difficult. Consider, for
instance, the list of properties L = 〈 size > 3 cm, size < 9 cm 〉. If interleaving forced
us to realise the two properties in L one by one, then it would no longer be possible to
combine them into, for example, ‘the largest mouse but one’ (if the facts in the KB sup-
port it), or even into ‘the mice between 3 and 9cm’ (since size> 3 cm is realised before
size < 9 cm). Clearly, sophisticated use of gradable adjectives requires a separation
between CD and Linguistic Realisation, unless one is willing to complicate linguistic re-
alisation considerably.
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Having said this, the distinction between CD and Linguistic Realisation is not always
easy to draw. We propose to think of it as separating the language-independent, logical
aspect of referring expressions generation from its language-dependent, linguistic as-
pect. Our algorithm suggests a distinction into three phases, the first two of which can
be thought of as part of CD:

(1) CD proper, that is, the production of a distinguishing list of properties L;
(2) An inference phase, during which the list L is transformed;
(3) A realisation phase, during which the choice between base, superlative and com-
parative forms is made, among other things.

One area of current interest concerns the left-to-right arrangement of pre-modifying ad-
jectives within an NP (e.g., Shaw and Hatzivassiloglou 1999, Malouf 2000). Work in this
area is often based on assigning adjectives to a small number of categories (e.g., Pre-
central, Central, Postcentral, and Pre-head) which predict adjectives’ relative position.
Interestingly, vague properties tend to be realised before others. Greenbaum et al. (1985),
for example, report that ‘adjectives denoting size, length, and height normally pre-
cede other nonderived adjectives’ (e.g., ‘the small round table’ is usually preferred to
‘the round small table’).

Semantically, this does not come as a surprise. In a noun phrase of the form ‘the three
small(-est) [N]’, for example, the words preceding N select the three smallest elements
of [N]. It follows that, to denote the three smallest elements of the set of round tables,
the only option is to say ‘the three small round tables’, rather than ‘the three round small
tables’. The latter would mean something else, namely ‘the three round ones among the
n small(est) tables’ (where n is not specified). It actually seems quite possible to say this,
but only when some set of small tables is contextually salient (e.g., ‘I don’t mean those
small tables, I mean the three round ones’). Given that n is unspecified, the noun phrase
would tend to be very unclear in any other context.

The VAGUE program follows Greenbaum’s rule by realising gradable properties before
non-gradable ones, choosing some simple (and sometimes stilted) syntactic patterns.

7. Empirical grounding

A full validation of a GRE program that generates vague descriptions would address
the following questions: (1) When is it natural to generate a vague description (i.e., a
qualitative description as opposed to a purely quantitative one)? (2) Given that a vague
description is used, which form of the description is most natural? and (3) Are the gen-
erated descriptions properly understood by hearers and readers? Much is unknown,
but we shall summarise the available results in these three areas very briefly, referring
readers to the literature for details.

7.1 Human speakers’ use of vague descriptions
Common sense (as well as the Gricean maximes, Grice 1975) suggests that vague
descriptions are preferred by speakers over quantitative ones whenever the additional
information provided by a quantitative description is irrelevant to the purpose of the
communication. We are not aware of any empirical validation of this idea, but the fact
that vague descriptions are frequent is fairly well documented. Dale and Reiter, for
example, discussed the transcripts of a dialogue between people who assemble a piece
of garden furniture (originally recorded by Candy Sidner). They found that, while
instructional texts tended to use numerical descriptions like ‘the 3 1

4” bolt’, human
assemblers ‘unless they were reading or discussing the written instructions, in all cases used
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relative modifiers, such as the long bolt’ (Dale and Reiter 1995).6

Our own experiments (van Deemter 2004) point in the same direction. In one exper-
iment, for example, 34 students at the University of Brighton were shown six pieces
of paper, each of which showed two isosceles and approximately equilateral triangles.
Triangles of three sizes were shown, with bases of 5mm, 8mm, and 16mm respectively.
On each sheet, one of the two triangles had been circled with a pencil. We asked subjects
to imagine themselves on the phone to someone who held a copy of the same sheet, but
not necessarily with the same orientation (e.g., possibly upside down), and to complete
the answers on the dots:

Q: Which triangle on this sheet
was circled?

A: The ............ triangle.
This setup was used for testing a number of hypotheses. What is relevant for current
purposes is that all except one subject used qualitative size-related descriptions (‘the
big triangle’, ‘the largest triangle’, etc.) in the vast majority of cases. As many as 27 of
the 34 subjects used such descriptions in all cases.

It seems likely that qualitative descriptions would be less frequent if speakers were
offered an easy way to determine the relevant measurements (e.g., if a spring rule was
provided). As it was, subjects went for the easy option, relying on a comparison of sizes
rather than on an estimation of their absolute values. Further experiments are needed
before we can say with more confidence under what circumstances vague descriptions
are favoured over absolute ones.

It is normally perhaps unlikely that people produce language on the basis on the kind of
numerical representations that our algorithm has used as input. Although psychological
plausibility is not our aim, it is worth noting that the inequalities computed as step 2
of the algorithm of section 4 might be psychologically more plausible, since they are
essentially no more than comparisons between objects.

7.2 Testing the correctness of the generated expressions
Sedivy et al. (1999) asked subjects to identify the target of a vague description in a
visual scene. Consider ‘the tall cup’. The relevant scene would contain three distractors:
(1) a less tall object of the same type as the target (e.g., a cup that is less tall), (2) a
different kind of object which previous studies had shown to be intermediate in height
(e.g., a pitcher that, while being taller than both cups, was neither short nor tall for a
pitcher), and (3) a different type of object to which the adjective is inapplicable (e.g., a
door key). Across the different conditions under which the experiment was done (e.g.,
allowing subjects to study the domain before or after the onset of speech), it was found
not to matter much whether the adjective applied ‘intrinsically’ to the target object (i.e.,
whether the target was tall for a cup): hearers identifed the target without problems in
both types of situations. The time subjects took before looking at the target for the first
time was measured, and although these latency times were somewhat greater when the
referent were not intrinsically tall than when they were, the average difference was tiny
at 554 versus 538 miliseconds. Since latency times are thought to be sensitive to most of

6 Presumably, Beun and Cremers (1998) found vague adjectives to be

rare because, in their experiments, referents could always be identified

using non-gradable dimensions.
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the problems that hearers may have in processing a text, these results suggest that, for
dimensional adjectives, it is forgivable to disregard global context.

To get an idea whether our plural descriptions are understood correctly by human
readers, we showed subjects sequences of numbers, exactly two of which appeared in
brackets, along with the following instructions:

Suppose you want to inform a hearer *which numbers in a given
list appear in brackets*, where the hearer knows what the numbers
are, but not which of them appear in brackets. For example, the
hearer knows that the list is

1 2 1 7 7 1 1 3 1

You, as a speaker, know that only the two occurrences of the
number 7 appear in brackets:

1 2 1 (7) (7) 1 1 3 1

Our question to you is: Would it be *correct* to convey this
information by saying ‘‘The two high numbers appear in brackets’’?

The outcomes of the experiment suggested that readers understand plural vague de-
scriptions in accordance with the semantics of section 2 (van Deemter 2000). In other
words, they judged the description to be correct if and only if the two highest numbers
in the sequence appeared in brackets.

Assessing the evidence, it seems that vague descriptions are largely unproblematic from
the point of view of interpretation.

7.3 Testing the felicity of the generated expressions
How can we choose between the different forms that a vague description can take?
Reiter and Sripada (2002) showed that the variation in corpora based on expert authors
can be considerable, especially in their use of vague expressions (e.g., ‘by evening’, ‘by
late evening’, ‘around midnight’). We confirmed these findings using experiments with
human subjects (van Deemter 2004), focussing on the choice between the different forms
of the adjective. Informally:

1. The Dychotomy constraint of section 5 did not hold up well: Even when
comparing two things, the superlative form was often preferred over the
comparative.

2. When base forms were used, the gap was almost invariably large.

3. Yet, the Minimality constraint of section 5 turned out to be difficult to confirm:
Even when the gap was large, base forms were often dispreferred.

The validity of these results can be debated (van Deemter 2004) but, taking them at face
value, one could base different generation strategies on them. For example, one might
use the superlative all the time, since this was – surprisingly – the most frequent form
overall. Based on point (2), however, one might also defend using the base form when-
ever the gap is large enough (as was done in the VAGUE program). Future experiments
should allow us to refine this position, perhaps depending on factors such as genre,
communicative goal, and type of audience.

8. Incrementality: help or hindrance?

The account sketched in section 4 was superimposed on an incremental GRE algorithm,
partly because incrementality is well established in this area (Appelt 1985, Dale and Re-
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iter 1995). But IA may be replaced by any other reasonable7 GRE algorithm, for example
one that always exactly minimises the number of properties expressed, or one that al-
ways ‘greedily’ selects the property that removes the maximum number of distractors.
Let G be any such GRE algorithm, then we can proceed as follows:
GRE for Vague Descriptions (version not relying on IA):

1. Construct KB using Attributes and Values, assigning numerical Values to gradable
Attributes.

2. Recompile the KB, replacing equalities by inequalities.

3. Let G deliver an unordered set of properties which jointly distinguish the target if such a
set exists. (One or more of these properties may be inequalities.)

4. Impose a linear ordering on the properties produced by (3). (If one wishes to generate the
same descriptions as in sections 4.1 and 4.2, then inequalities go last.) Delete any
inequalities that do not remove any distractors.

5. Apply inferences (in the style of section 4.1) to the list of properties.

6. Perform Linguistic Realisation.

Imposing a linear order (4) is a necessary preparation for (5) because the superlative
properties resulting from (5), unlike the inequalities resulting from (4), are context de-
pendent. For example, 〈mouse, size(x) = max2〉 (the largest two mice, {c3, c4}) does not
equal 〈size(x) = max2, mouse 〉 (the mouse among the largest two elements, {c4}). Dele-
tion of superfluous inequalities avoids saying, for example, ‘the short(est) black mouse’
if there is only one black mouse, because this might invite false implicatures.

Problems with incrementality. While IA is generally thought to be consistent with find-
ings on human language production (Hermann and Deutsch 1976, Levelt 1989, Pech-
mann 1989, Sonnenschein 1982), the hypothesis that incrementality is a good model of
human GRE seems unfalsifiable until a preference order is specified for the properties
on which it operates. (Wildly redundant descriptions can result if the ‘wrong’ prefer-
ence order are chosen.) We shall see that vague descriptions pose particular challenges
to incrementality.

One question emerges when the IA is combined with findings on word order and incre-
mental interpretation. If human speakers and/or writers perform CD incrementally, then
why are properties not expressed in the same order in which they were selected? This
question is especially pertinent in the case of vague expressions, since gradable proper-
ties are selected last, but realised first (section 6). This means that the Linguistic Reali-
sation cannot start until CD is concluded, contradicting eye-tracking experiments sug-
gesting that speakers start speaking while still scanning distractors (Pechmann 1989).
A similar problem is discussed in the psycholinguistics of interpretation (Sedivy et al.
1999): interpretation is widely assumed to proceed incrementally, but vague descrip-
tions resist strict incrementality, since an adjective in a vague description can only be
fully interpreted when its comparison set is known. Sedivy and colleagues resolve this

7 Concretely, we require of a reasonable GRE algorithm that it avoid

combining logically comparable inequalities, such as size(x) > 10 and

size(x) > 20, inside one description. All GRE algorithms that we

know of fulfill this requirement.
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quandary by allowing a kind of revision, whereby later words allow hearers to refine
their interpretation of gradable adjectives. – Summarising the situation in generation
and interpretation, it is clear that the last word on incrementality has not been said.

Low preference for gradable properties? It has been argued that, in an incremental ap-
proach, gradable properties should be given a low preference ranking because they are
difficult to process (Krahmer and Theune 2002). We have seen in section 4.3 that genera-
tion and interpretation of vague descriptions does have a slightly higher computational
complexity than that of non-vague descriptions. Yet, by giving gradable properties a
low ranking, we might cause the algorithm to under-use them, for example in situations
where gradable properties are highly relevant to the purpose of the discourse (e.g., a fist
fight between people of very different sizes). Luckily, there are no semantic or algorith-
mic reasons for giving gradables a low ranking. Let us see how things would work if
they were ranked more highly.

Suppose comparative properties do not go to the end of the preference list. After trans-
formation into superlative properties, this alternative preference ranking could lead to
a list like 〈mouse, size(x) = min4, brown, weight(x) = max2〉, where two ordinary prop-
erties are separated by a superlative one. A direct approach to Realisation might word
this as ‘The two heaviest brown ones among the smallest four mice’. To avoid such
awkward expressions, one can change the order of properties after CD (mirroring step
(4) above), moving the inequalities to the end of the list before they are transformed into
the appropriate superlatives. The effect would be to boost the number of occurrences of
gradable properties in generated descriptions while keeping CD incremental.

9. Extensions of the approach

Relational descriptions. Some generalisations of our method are fairly straightforward.
For example, consider a relational description (cf., Dale and Haddock 1991) involving a
gradable adjective, as in ‘the dog in the large shed’. CD for this type of descriptions along
the lines of section 4 is not difficult once relational descriptions are integrated with a
standard GRE algorithm (Krahmer and Theune 2002, section 8.6.2): suppose an initial
description is generated describing the set of all those dogs that are in sheds over a given
size (say, size 5); if this description happens to distinguishing an individual dog then
this legitimises the use of the noun phrase ‘the dog in the large shed’. Note that this is
felicitous even if the shed is not the largest one in the domain, as is true for d2 in the
following situation: (contains-a=b means that a is contained by b)

type(d1)=type(d2)=dog
type(c)=cat
type(s1)=type(s2)=type(s3)=shed
size(d1)=size(d2)=size(c)=1m
size(s1)=3m
size(s2)=5m
size(s3)=6m
contains-d1=s1
contains-d2=s2
contains-c=s3

In other words, ‘the dog in the large shed’ denotes ‘the dog such that there is no other
shed that is equally large or larger and that contains a dog’. Note that it would be odd, in
the above-sketched situation, to say ‘the dog in the largest shed’.

Boolean combinations. Generalisations to complex Boolean descriptions involving
negation and disjunction (van Deemter 2004) appear to be largely straightforward, ex-
cept for issues to do with opposites and markedness. For example, the generator will
have to decide whether to say ‘the patients that are old’ or ‘the patients that are not
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young’.

9.1 Multidimensionality
Combinations of adjectives. When objects are compared in terms of several dimen-
sions, these dimensions can be weighed in different ways (e.g., Rasmusen 1989). Let us
focus on references to an individual referent r, starting with a description that contains
more than one gradable adjective. The NP ‘the tall fat giraffe’, for example, can safely
refer to an element b in a situation like the one below, where b is the only element that
exceeds all distractors with respect to some dimension (a different one for a than for c,
as it happens) while not being exceeded by any distractors in any dimension:

height(a) = 5 m
height(b) = height(c) = 15 m
width(a) = width(b) = 3 m
width(c) = 2 m

Cases like this would be covered if the decision-theoretic property of Pareto Optimality
(e.g., Feldman 1980) was used as the sole criterion: Formally, an object r ∈ C has a
Pareto-Optimal combination of Values V iff there is no other x ∈ C such that

(1) ∃Vi ∈ V : Vi(x) > Vi(r) and
(2) ¬∃Vj ∈ V : Vj(x) < Vj(r)

In our example, b is the only object that has a Pareto-Optimal combination of Values,
predicting correctly that b can be called ‘the tall fat giraffe’. It seems likely, however,
that people use doubly-graded descriptions more liberally. For example, if the example
is modified by letting width(a) = 3.1 m, making a slightly fatter than b, then b might
still be the only reasonable referent of ‘the tall fat giraffe’. Many alternative strategies are
possible. The Nash arbitration plan, for example, would allow a doubly-graded descrip-
tion whenever the product of the Values for the referent r exceeds that of all distractors
(Nash 1950; cf., Gorniak and Roy 2003, Thorisson 2004, for other plans).

Multidimensional adjectives (and colour). Multidimensionality can also slip in
through the backdoor. Consider big, for example, when applied to 3D shapes. If there
exists a formula for mapping three dimensions into one (e.g., length.width.height) then
the result is one dimension (overall-size), and the algorithm of section 4 can be ap-
plied verbatim. But if ‘big’ is applied to a person then it is far from clear that there is one
canonical formula for mapping the different dimensions of your body into one overall
dimension, and this complicates the situation. Similar things hold for such multi-faceted
properties like intelligence (Kamp 1975).

Colour terms are a case apart. If colour is modelled in terms of saturation, hue, and
luminosity, for instance, then an object a may be classified as ‘greener’ than b on one
dimension (e.g., saturation), but ‘less green’ than b on another (e.g., hue). This would
considerably complicate the application of our algorithm to colour terms, which is oth-
erwise mostly straighforward (section 9.3). (‘The green chair’, said in the presence of
two green-ish chairs, would refer to the one that is closest to prototypical green.) A
further complication is that different speakers can regard very different values as pro-
totypical, making it difficult to assess which of two objects is ‘greener’ even on one
dimension (Berlin and Kay 1969, p.10-12). (Ideally, GRE should also take into account
that the meaning of colour words can differ across different types of referent. Red as in
‘red hair’, for example, differs from red as in ‘red chair’.)

Different attitudes towards multidimensionality are possible. One possibility is to be
cautious and to keep aiming for distinguishing descriptions in the strict sense. In this
case, the program should limit the use of vague descriptions to situations where there
exists a referent that has a Pareto-optimal combination of Values. Alternatively, one
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could allow referring expressions to be ambiguous. It would be consistent with this
attitude, for example, to map multiple dimensions into one over-all dimension, perhaps
by borrowing from principles applied in perceptual grouping, where different perceptual
dimensions are mapped into one (e.g., Thorisson 1994). The empirical basis of this line
of work, however, is still somewhat weak, so the risk of referential unclarity looms large.
Also, this attitude would go against the spirit of GRE, where referring expressions have
always been assumed to be distinguishing.

9.2 Salience as a gradable property
We shall see that a natural treatment of salience falls automatically out of our treatment
of vague descriptions. As we shall see, this will allow us to simplify the structure of GRE
algorithms, and it will explain why many definite descriptions that look as if they were
distinguishing descriptions are actually ambiguous.

A new perspective on salience. Krahmer and Theune (2002) have argued that Dale
and Reiter’s dichotomy between salient and non-salient objects (where the objects in
the domain are the salient ones) should be replaced by an account that takes degrees of
salience into account: No object can be too unsalient to be referred to, as long as the right
properties are available. In effect, this proposal (which measured salience numerically)
analyses ‘the black mouse’ as denoting the unique most salient object in the domain
that is both black and a mouse. Now suppose we let GRE treat salience just like other
gradable Attributes. Suppose there are ten mice, five of which are black, whose degrees
of salience are 1, 1, 3, 4, and 5 (the last one being most salient), while the other objects
in the domain (cats, white mice) all have a higher salience. Then our algorithm might
generate this list of properties:

L = 〈 mouse, black, salience > 4 〉.

This is a distinguishing description of the black mouse whose salience is 5: ‘the most
salient black mouse’. The simpler description ‘the black mouse’ can be derived by stipu-
lating that the property of being most salient can be left implicit in English. The salience
Attribute has to be taken into account by CD, however, and this can be ensured in various
ways. For example, instead of testing whether C ∩ [[ 〈Ai, Vi〉 ]] = {r}, one tests whether
r is the most salient element of C ∩ [[ 〈Ai, Vi〉 ]]. Alternatively, the algorithm might pro-
ceed as usual, performing the usual test (involving C ∩ [[ 〈Ai, Vi〉 ]] = {r}) but starting
with a reduced domain, consisting of the things that are at least as salient as the target r:
Domain := {x ∈ Domain: salience(x) ≥ r}. The two approaches are equivalent in many
situations.

Salience + plurality = ambiguity. It is now easy to see why plural descriptions are of-
ten ambiguous. Taking salience into account as suggested above, the singular ‘the black
mouse’ can only refer to the most salient mouse. But ‘the mice’ can refer to the most
salient two (sized 5 and 4), the most salient three (sized 5, 4 and 3), or to all of them.
To disambiguate the description, something like a number can be used (e.g., ‘the two
mice’), just like in the case of vague descriptions.

When salience is combined with other gradable notions, the likelihood of unclarity is
even greater. Consider ‘the large(st) dog’. Our analysis predicts ambiguity when size
and salience do not go hand in hand.

Type: d1 (dog), d2 (dog), d3 (dog), d4 (dog), c5 (cat)
Size: d1 (20cm), d2 (50cm), d3 (70cm), d4 (60cm), c5 (50cm)
Salience: d1 (6), d2 (4), d3 (3), d4 (5), c5 (6).

If we are interested in the three most salient dogs (d1, d2 and d4) then ‘the large(est) dog’
designates d4, but if we are interested in the four most salient ones (d1, d2, d3 and d4),
then it designates d3, for example. In other words, the description is ambiguous between
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d3 and d4, depending on whether we attach greater importance to salience or size. This
is borne out by our generation algorithm. Consider the simpler of the two treatments of
salience, for example, which starts out with a reduced domain. If d4 is the target then the
reduced domain (consisting of all things at least as salient as the target) is {d1, d2, d4, c5};
‘dog’ narrows this down to {d1, d2, d4}, after which ‘size = max1’ generates ‘the large
dog’. But if d3 is the target then the same procedure applies, this time starting with the
full domain (since no element is less salient that d3) and the same description is gener-
ated to refer to a different animal. For a reader, clearly, salience and gradable adjectives
are a problematic combination. This should come as no surprise, since salience itself is
a gradable property, and combinations of gradable properties are always problematic,
as we have seen in the previous section.

Salience as a multidimensional property. Note that salience itself is multidimensional.
Consider two people talking about ‘the railway station’, when one railway station is
near but of only minor importance (e.g., only few trains stop there), while another is
further afield but of greater significance for travel. In such a situation, it can be unclear
which of the two railway stations is intended. Without more empirical research, we can-
not know how people combine salience with other dimensions.

GRE has usually assumed that distinguishing descriptions are the norm, but once
salience is taken into account (especially in combination with plurals and/or other grad-
able dimensions) it becomes difficult to generate descriptions that are immune to being
misunderstood.

9.3 Beyond Vague Descriptions: nouns, and pointing
Nouns. Two other generalisations are worth mentioning. The first involves a class of
descriptions that do not involve any overt gradable adjectives. Colour terms, for exam-
ple (cf., section 9.1), are applicable to different degrees, and the same is true for many
other nouns, such as ‘girl’, which involves a vaguely defined age. Similar claims can be
made about less obvious cases. Consider a gathering containing one famous professor
(a), one junior lecturer (b), one PhD student (c), and a policeman (e). Then the word ‘aca-
demic’ might denote (a), but also (b) or (c). Accordingly, each of the following referring
expressions appears viable, mirroring examples 3-4 of section 2:

1. the academic (Can only refer to a)
2. both academics (Can only refer to {a, b})
3. the three academics (Can only refer to {a, b, c})

These descriptions are easily generated on the basis of a KB that involves Values
representing degrees of being an academic, the more so because our approach gener-
alises to ordinal measurements (except for Small Gaps (section 5), which requires an
interval or ratio scale, since it involves an assessment of the size of the gap between
Values). Note that this treatment could cover all those nouns that are used with various
degrees of strictness. It is difficult to say how many nouns fall in this category, but
the phenomenon appears to be widespread. An uncomfortable consequence of these
observations is that it is no longer obvious which words denote a crisp property, and
which a gradable property. (For example, it is not clear whether GRE should treat
‘academic’ as gradable.)

Pointing. To show that vagueness is also inherent in multimodal communication,
imagine the same gathering, but with some more people present. Suppose someone
points at the centre of the gathering. (See below, where W denotes women.) If the
distance between pointer and pointee is considerable then the boundaries of the region
pointed to are not exactly defined: e is definitely pointed at, but d and f might be
doubtful:
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[W] [W] [W] [W]
a b c d e f g h i

ˆˆˆˆˆˆˆˆˆˆ
||||||||||

Here, {e} is a possible referent, and so are {d, e, f } and perhaps {c, d, e, f , g}. The set
{d, f } is not, since there is a gap between its two elements. If precise pointing is repre-
sented as a crisp property whose denotation equals the set of elements pointed at (Krah-
mer and Van der Sluis 2003), then vague pointing can be incorporated in our algorithm
by representing it by a gradable property: we let the generator use a KB that involves
numerical degrees of being pointed at, where this degree is highest for e, next highest
for d and f , and so on. If this is done, the generator can generate ‘these two women’,
along with a pointing gesture like the one in our example, to refer to {e, f }. No changes
to the algorithm of section 4 are necessary. A variant of this approach arises if pointing
is modelled as a way of establishing degrees of salience (i.e., the closer to the center of
pointing, the higher the value for the attribute SALIENCE) in the style of section 9.2.

10. Conclusion

If the usefulness of NLG resides in its ability to present data into human-accessible form,
then vagueness must surely be one of its central instruments, because it allows the sup-
pression of irrelevant detail. In principle, this might be done by providing the generator
with vague input – in which case no special algorithms are needed – but suitably contex-
tualised vague input is often not available Mellish (2000). The only practical alternative
is to provide the generator with ‘crisp’ (i.e., quantitative) input, allowing the generator
to be hooked on to a general-purpose database. It is this avenue that we have explored
in this paper, in combination with various (incremental and other) approaches to GRE.

Far from being a peculiarity of a few adjectives, vagueness is widespread. We believe
that our approach can be applied to a variety of situations in which vagueness affects
referring expressions including, for example,

• Colour terms (section 9.1).

• Nouns that allow different degrees of strictness (section 9.3).

• Degrees of salience (section 9.2).

• Imprecise pointing (section 9.3).

On the other hand, we have also met some considerable obstacles on our way:

Expressive choice (sections 4 and 7). By enabling the generator to produce more refer-
ring expressions, we have made it harder to choose between them. For example, when
is a qualitative description preferable over a quantitative one? At a more detailed level,
the generator must choose between descriptions like ‘The heaviest two of the smallest
three mice’, ‘The mice that weigh between 40 and 60 grams’, and so on, each of which
may single out the same individuals. Section 7.3 has summarised some experimental
evidence related to such choices, focussing on the different forms of the adjective, but
the evidence is far from conclusive. Much is still unknown, differences between speak-
ers abound, and the experimental methodology for advancing the state of the art in this
area is not without its problems (van Deemter 2004).

Architecture (section 6). The inference rules that were necessary to convert one list of
properties into another do not sit comfortably within the received NLG pipeline (e.g.,
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Reiter and Dale 2000). An example of such an inference rule is the one that transforms a
list of the form 〈mouse, >10cm〉 into one of the form 〈mouse, size(x) = max2〉 if only two
mice are larger than 10cm. The same issues also make it difficult to interleave CD and
Linguistic Realisation as proposed by various authors, because properties may need to
be combined before they are expressed.

Incrementality (section 8). Gradable adjectives complicate the notion of incrementality,
in generation as well as interpretation. Focussing on generation, for example, they force
us to re-examine the idea that properties can be put into words more or less as soon
as they have been selected by Content Determination (even apart from the issue noted
under Architecture).

Adjectives and presuppositions (section 2). Our generation-oriented perspective sheds
some doubt on Bierwisch’s claim that dimensional adjectives are insensitive to stan-
dards provided by the global context: If a man’s height is 205cm, then surely no local
context can make it felicitous (as opposed to just humourous) to refer to him as ‘the
short man’. A related issue that we have not touched upon is the fact that adjectives are
often used partly to pass judgement: One and the same car might be designed as ‘the
expensive car’ by a hesitant customer and as ‘the luxury car’ by an eager salesman: even
if expense and luxury go hand in hand, the two adjectives have different connotations,
and this is something that a generator would ideally be aware of.

Multidimensionality (section 9.1). We know roughly how to deal with one gradable di-
mension: ‘The short man’, for example, is the shortest man around. But in practice, we
often juggle several dimensions. This happens, for example, when two adjectives are
used (‘the short thin man’), or when salience is taken into account (e.g., ‘the short man’,
when the shortest man is not the most salient one), threatening to make irrefutably dis-
tinguishing descriptions something of an exception. (For a study of approaches to mul-
tidimensionality in a different area, see Masthoff 2004.) At some point, GRE may have to
abandon the strategy of aiming for unambiguous descriptions in all situations.
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