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Abstract
Despite being the focus of intensive research, eval-
uation of algorithms that generate referring expres-
sions is still in its infancy. We describe a corpus-
based evaluation methodology, applied to a number
of classic algorithms in this area. The methodology
focusses on balance and semantic transparency to
enable comparison of human and algorithmic out-
put. Although the Incremental Algorithm emerges
as the best match, we found that its dependency on
manually-set parameters makes its performance dif-
ficult to predict.

1 Introduction
The Generation of Referring Expressions (GRE) is a
core task in most Natural Language Generation sys-
tems. The current state of the art in this area is domi-
nated by versions of the Incremental Algorithm (IA)
of Dale and Reiter (1995). Focussing on the gener-
ation of “first-mention” definite descriptions, Dale
and Reiter compared the IA to a number of its pre-
decessors, including a Full Brevity (FB) algorithm,
which generates descriptions of minimal length, and
a Greedy algorithm (GR), which approximates Full
Brevity (Dale, 1989). In doing so, the authors fo-
cussed on Content Determination (CD, which is the
purely semantic part of GRE), and on a description’s
ability to identify a referent for a hearer, abstracting
away from other communicative intentions. They
argued that the IA was a superior model, and pre-
dicted that it would be the better match to human
referential behaviour.1 This was due in part to

1Dale and Reiter also observed that IA is computationally
more efficient than its competitors, although GR has only poly-
nomial complexity. Consistent with the balance of subsequent
research, we shall be de-emphasising complexity issues here.

the way the IA searches for a distinguishing de-
scription by performing gradient descent. along a
predetermined list of domain attributes, called the
preference order, whose ranking reflects general or
domain-specific preferences (see §4.1).

The Incremental Algorithm has served as a start-
ing point for later models which sought to extend
the expressiveness and coverage of GRE (Horacek,
1997; Kelleher and Kruijff, 2006). Its original mo-
tivations have made it a yardstick against which to
compare other approaches (Gardent, 2002; Jordan
and Walker, 2005). Despite its influence, few em-
pirical evaluations have focused on the IA. Evalu-
ation is even more desirable given the dependency
of the algorithm on a preference order, which can
radically change its behaviour, so that in a domain
with n attributes, there are in principle n! different
algorithms.

This paper is concerned with applying a corpus-
based methodology to evaluate content determina-
tion for GRE (i.e. not realisation). This is compli-
cated by the semantically intensive nature of GRE.
GRE algorithms take as input a Knowledge Base
(KB), which lists domain entities and their proper-
ties (often represented as attribute-value pairs), to-
gether with a set of intended referents, R. The
output of CD is a distinguishing description of R,
that is, a logical form which distinguishes this set
from its distractors. A reliable corpus-based GRE
evaluation should ideally be performed against a se-
mantically and pragmatically transparent corpus.
Semantic transparency means that all the relevant
knowledge available to the human authors of the
corpus is known. Similarly, pragmatic transparency
ensures that the authors’ communicative intentions
are known. Ideally, the corpus should be balanced
in both respects so that, for example, different kinds



of referents occur an equal number of times.
This paper describes the construction of a cor-

pus that meets these requirements, and an evalu-
ation that addressed, as its principal question, the
differences between IA and its predecessors against
human descriptions in domains of varying complex-
ity, containing both singular and plural descriptions.
The study also aimed to contribute to a growing de-
bate in the NLG community, on the evaluation of
NLG systems, arguing in favour of the careful con-
struction of balanced and transparent corpora to
serve as resources for NLG.

2 Related work
We are aware of three studies that concern the eval-
uation of GRE algorithms. Two of these (Jordan and
Walker, 2005; Gupta and Stent, 2005) compared the
IA to some alternative models, using the COCONUT
dialogue corpus. The third (Viethen and Dale, 2006)
used a small corpus collected in a monologue set-
ting. These studies meet the transparency require-
ments to different degrees. Though COCONUT dia-
logues were elicited against a well-defined domain,
(Jordan, 2000) has emphasised that reference, in
COCONUT, was often intended to satisfy intentions
over and above identification. Thus, evaluating the
IA against this data may not have done justice to
a content determination strategy designed solely to
achieve this aim. Furthermore, Gupta and Stent
used an evaluation metric that included aspects of
the syntactic structure of descriptions (specifically,
modifier placement), thus arguably obscuring the
role of content determination (CD).

Our approach is closest in spirit to that of Viethen
and Dale, who elicited descriptions from people in
a setting where identification was the sole commu-
nicative aim, and compared the IA and GR algo-
rithms against the corpus. However, there are cru-
cial questions that remain unanswered in their study.
In the case of the IA, the authors averaged over
24 different preference orders, potentially averaging
over 24 very different incarnations of the algorithm
and masking the impact of any one order. Similarly,
neither Jordan/Walker nor Gupta/Stent are explicit
about the determination of the preference order for
the IA in their studies. Moreover, no obvious at-
tempts were made to make sure that the corpora in
question were semantically balanced.

One question that these studies raise relates to
how human-authored and automatically generated
descriptions should be compared. For instance, both

TYPE COLOUR ORIENTATION SIZE
chair blue forward large
sofa red backward small
desk green leftward
fan grey rightward

Table 1: Non-numeric attributes in the corpus do-
mains

Jordan/Walker and Viethen/Dale use a measure of
recall. This indicates the coverage of an algorithm
in relation to a corpus, but does not measure the de-
gree of similarity between a description generated
by an algorithm and a description in the corpus,
punishing all mismatches with equal severity.

3 A semantically transparent corpus of
references

We built a corpus consisting of ca. 1800 descrip-
tions, collected through a controlled experiment run
over the web for three months. Half of this cor-
pus contains descriptons of real photographs of peo-
ple; the other half contains descriptions of artifi-
cially constructed pictures of household items. In
this paper, we focus exclusively on the latter sub-
corpus. This represents the simpler of the two do-
mains, consisting of digitally constructed pictures
of objects with well-defined properties. Therefore,
it provides a good test case for the algorithms evalu-
ated, since it allows us to probe into a number of is-
sues that arise even with straightforwardly describ-
able objects. The people sub-corpus is more com-
plex, since the objects are real photographs and af-
ford an author (or an algorithm) with many alterna-
tives for producing a description. A comparison of
the results reported below with parallel results on
the people domain can be found in van der Sluis et
al. (2007).

3.1 Materials, design and procedure
The household sub-corpus consists of 900 descrip-
tions from 45 native or fluent speakers of English.
Participants described objects in 20 trials, each cor-
responding to a domain where there were one or
two clearly marked target referents and six distrac-
tor objects, placed in a 3 (row) × 5 (column) grid.
Pictures of the objects represented combinations of
values of the four attributes shown in the top panel
of Table 1. In addition, the horizontal and verti-
cal position of the objects is also explicitly repre-
sented in domains, using two numeric-valued at-
tributes, X-DIM (row) and Y-DIM (column). Their
value was randomly determined with every fresh



trial. Approximately half the corpus descriptions in-
clude locative expressions2. We will refer to this as
the +LOC dataset, containing 412 descriptions from
26 authors. The other half, the −LOC dataset (444
descriptions; 27 authors), consists of descriptions
using only COLOUR, SIZE and ORIENTATION, apart
from TYPE.

Participants were told that they had to identify ob-
jects for a language-understanding program which
would interpret their descriptions and remove the
referents from the domain. They were asked to type
distinguishing descriptions as though they were in-
teracting remotely with another person. Each time a
participant submitted a description, one or two ob-
jects were automatically removed from the domain
by a function which had been preset to remove the
wrong objects on approximately one-fourth of the
trials. During a debriefing phase, participants who
completed the experiment were asked to rate their
agreement to the statement The system performed
well on this task. Of the 5 response categories,
ranging from strongly agree to strongly disagree, 34
individuals selected agree or strongly agree, while
none selected strongly disagree.

The corpus is semantically balanced, in that for
each possible combination of the attributes in Table
1, there was an equal number of domains in which
an identifying description of the target(s) required
the use of those attributes. We refer to this as the
minimal description (MD) of the target set. For ex-
ample, there was a domain in which a target could
be minimally distinguished by using COLOUR and
SIZE. TYPE was never included in the minimal de-
scription, leaving 7 possible attribute combinations.

The experiment manipulated one within-subjects
variable, Cardinality/Similarity (3 levels):

1. Singular (SG): 7 domains contained a single tar-
get referent
2. Plural/Similar (PS): 6 domains had two ref-
erents, which had identical values on the MD at-
tributes. For example, both targets might be blue in
a domain where COLOUR sufficed for a distinguish-
ing description.
3. Plural/Dissimilar (PD): In the remaining 7 Plu-
ral trials, the targets had different values of the min-
imally distinguishing attributes.

2This was manipulated as a second, between-subjects fac-
tor. Participants were randomly placed in groups which varied
in whether they could use location or not, and in whether the
communicative situation was fault-critical or not. For more de-
tails, we refer to van Deemter et al. (2006).

Plural referents were taken into account because
plurality is pervasive in NL discourse. The litera-
ture (e.g., (Gardent, 2002)) suggests that they can be
treated adequately by minor variations of the classic
GRE algorithms (as long as the descriptions in ques-
tion refer distributively, cf. Stone (2000)), which is
something we considered worth testing.

3.2 Corpus annotation
The XML annotation scheme (van der Sluis et al.,
2006) pairs each corpus description with a repre-
sentation of the domain in which it was produced,
describing the domain entities, their attribute-value
information and location (row and column numbers)
in the grid (see Figure 1(a)). Figure 1(b) shows
the annotation of a plural description. ATTRIBUTE
tags enclose segments of a description correspond-
ing to properties, with name and value attributes
which constitute a semantic representation compat-
ible with the domain, abstracting away from lexical
variation. For example, in Figure 1(b), the expres-
sion at an oblique angle is tagged as ORIENTATION,
with the value rightward. If a part of a description
could not be resolved against the domain represen-
tation, it was enclosed in an ATTRIBUTE tag with
the value other for name. Because of the well-
defined nature of the domains, this was only neces-
sary in 39 descriptions (3.2%).

The DESCRIPTION tag in Figure 1(b), permits
the automatic compilation of a logical form from
a human-authored description. Figure 1(b) is a
plural description enclosing two singular
ones. Correspondingly, the logical form of each
embedded description is a conjunction of attributes,
while the two sibling descriptions are disjoined, as
shown in (1).

(1) (large ∧ sofa ∧ right) ∨ (small ∧ desk)

3.3 Annotator reliability
The reliability of the annotation scheme was eval-
uated in a study involving two independent annota-
tors, both postgraduate students with an interest in
NLG, who used the same annotation manual (van der
Sluis et al., 2006). They were given a stratified ran-
dom sample of 270 descriptions, 2 from each Cardi-
nality/Similarity condition, from each author in the
corpus. To estimate inter-annotator agreement, we
compared annotations of A and B against those by
the present authors, using a version of the Dice co-
efficient of similarity. Let D1 and D2 be two de-
scriptions, and att(D) be the attributes in any de-



<ENTITY type=target’>

<ATTRIBUTE name=‘orientation’ value=‘right’ />

<ATTRIBUTE name=‘type’ value=‘sofa’ />

<ATTRIBUTE name=‘size’ value=‘large’ />

...

</ENTITY>

<ENTITY type=‘target’>

<ATTRIBUTE name=‘colour’ value=‘red’ />

<ATTRIBUTE name=‘type’ value=‘desk’ />

<ATTRIBUTE name=‘size’ value=‘small’ />

...

</ENTITY>

(a) Fragment of a domain

<DESCRIPTION num=‘plural’>

<DESCRIPTION num=‘singular’>

<ATTRIBUTE name=‘size’ value=‘large’>large</ATTRIBUTE>

<ATTRIBUTE name=‘type’ value=‘sofa’>settee</ATTRIBUTE>

<ATTRIBUTE name=‘orientation’ value=‘right’>

at oblique angle</ATTRIBUTE>

</DESCRIPTION>

and

<DESCRIPTION num=‘singular’>

<ATTRIBUTE name=‘size’ value=‘small’>small</ATTRIBUTE>

<ATTRIBUTE name=‘type’ value=‘desk’>desk</ATTRIBUTE>

</DESCRIPTION>

</DESCRIPTION>

(b) ‘large settee at oblique angle and small desk’

Figure 1: Corpus annotation examples

scription D. The coefficient, which ranges between
0 (no agreement) and 1 (perfect agreement) is cal-
culated as in (2).

In the present context, Dice is more appropriate
than agreement measures (such as the κ statistic)
which rely on predefined categories in which dis-
crete events can be classified. The ‘events’ in the
corpus are NL expressions, each of which is ‘clas-
sified’ in several ways (depending on how many at-
tributes a description expresses), and it was up to
an annotator’s judgment, given the instructions, to
select those segments and mark them up.

dice(D1, D2) =
2 × |att(D1) ∩ att(D2)|
|att(D1)| + |att(D2)|

(2)

Because descriptions could contain more than
one instance of an attribute (e.g. Figure 1(b) con-
tains two instances of SIZE), the sets of attributes
for this comparison were represented as multisets.

Both annotators showed a high mean agreement
with the present authors in their annotations, as in-
dicated by their mean and modal (most frequent)
scores (Annotator A: mean = 0.93, mode =
1 (74.4%); Annotator B: mean = 0.92; mode =
1 (73%)). They also evinced substantial agree-
ment among themselves (mean = 0.89, mode =
1 (71.1%)). These results suggest that the anno-
tation scheme used is replicable to a high degree,
and that independent annotators are likely to pro-
duce very similar semantic markup.

In the evaluation study reported below, we use
the same measure to compare algorithm and hu-
man output. This measure was adopted because an

optimally informative comparison should take into
account the number of attributes that an algorithm
omits in relation to the human gold standard, and
the number of attributes that it includes.

4 Evaluating the algorithms
The three algorithms mentioned in the Introduction
can be characterised as search problems (Bohnet
and Dale, 2005) which differ primarily in the way
they structure a search space populated by KB prop-
erties:

1. Full Brevity (FB): Finds the smallest distin-
guishing combination of properties.

2. Greedy (GR): Adds properties to a description,
always selecting the property with the greatest
discriminatory power.

3. Incremental (IA): Performs gradient descent
along a predefined list of properties. Like GR,
IA incrementally adds properties to a descrip-
tion until it is distinguishing.

The corpus was first divided into those de-
scriptions which did not contain locative expres-
sions (−LOC dataset) and those which did (+LOC
dataset). The evaluation was carried out separately
for the two datasets. Algorithms were compared to
a random baseline (RAND) which picked a property
randomly, and added it to the description if it re-
moved distractors and was true of the referents. In
the −LOC dataset, only GR and IA were compared.
This is because objects in this dataset were distin-
guishable on the basis of three attributes. When MD



is of length 1 or 2, GR and FB return identical out-
put. Though this need not be the case when it is of
length 3, it is an artefact of the corpus design in the
present case, since in these domains, MD consists
of all the available attributes (hence every algorithm
returns MD). The situation is very different in the
+LOC dataset, where there are 5 attributes, includ-
ing X-DIM and Y-DIM, and the minimal description
is unpredictable, given that the values of the locative
attributes were randomly determined in all domains.

All four algorithms also included TYPE by de-
fault. Adding TYPE, despite its lack of contrastive
value, was the norm in the corpus descriptions
(93.5%). While the IA always adds TYPE, as pro-
posed by Dale and Reiter (1995), we applied the
same trick to FB and GR to avoid penalising their
performance unnecessarily. In addition, we had to
extend the algorithms in two ways:

1. Plurality: To cover the plural descriptions in
the corpus, we used the algorithm of (van Deemter,
2002), which is an extension to the IA. The algo-
rithm first searches through the KB to find a distin-
guishing conjunction of properties, failing which, it
searches through disjunctions of increasing length
until a distinguishing description is found. FB and
GR can easily be extended in the same way.
2. Gradable properties: Inspection of locative ex-
pressions in the corpus revealed that these were es-
sentially gradable. An NP like ‘the table on the left’,
for example, was used even if the table was located
in the right half of the grid, as long as it was the
leftmost table. van Deemter (2006) has proposed
an algorithm to deal with such gradable properties.
The algorithm can use any of the GRE algorithms
(FB, GR, IA), as follows. Consider a property of the
form 〈A = n〉, where n is a real number, for ex-
ample 〈X-DIM = 3〉 (i.e., the property of being lo-
cated in the middle column of the grid). This equal-
ity is converted into a number of inequalities of the
forms 〈X-DIM > m〉 and 〈X-DIM < m’〉. For ex-
ample, in a domain with 2 objects, in column 2 and
3, this results in the inequalities 〈X-DIM > 2〉 and
〈X-DIM < 4〉. The GRE algorithm uses these in-
equalities in the same way as other properties. In
a postprocessing phase, they are transformed into a
superlative form. For example, if a referent is iden-
tified by 〈TYPE : sofa〉 ∧ 〈X-DIM > 2〉, this yields a
combination expressible as “the rightmost sofa”, or
“the sofa on the right”.

4.1 Preference orders for the IA
Someone who chooses a preference order to suit
a new NLG application does not have to throw a
dice: she can consult the psycholinguistic liter-
ature. Therefore, when assessing the impact of
preference orders on the IA, we compare some
psycholinguistically-motivated versions to a base-
line version which reverses the hypothesised trends.
In §4.4, we will then consider the extent to which
these orders match individual subjects, compared to
other possible orders. We denote a preference order
using the first letter of the attributes discussed in §1.

Psycholinguists have shown that attributes such
as COLOUR are included in descriptions of objects
even when they are not required (Pechmann, 1989;
Eikmeyer and Ahlsèn, 1996). Attributes such as
SIZE, which require comparison to other objects, are
more likely to be omitted, because they are cogni-
tively more costly (Belke and Meyer, 2002). Based
on this research, we hypothesise a ‘best’ preference
order for the algorithm (IA-BEST1) in the −LOC
dataset, and a baseline order (IA-BASE) which re-
verses it:

IA-BEST1: C >> O >> S

IA-BASE1: S >> O >> C

In the more complex +LOC dataset, the inclu-
sion of the numeric-valued X-DIM and Y-DIM in-
creases the number of attributes to 5. Arts (2004)
found that locative expressions in the vertical di-
mension were much more frequent than those in
the horizontal (see also Gapp (1995); Kelleher and
Kruijff (2006)). Two different descriptive patterns
dominate her data: Either Y-DIM and COLOUR are
strongly preferred and X-DIM is strongly dispre-
ferred, or Y-DIM and X-DIM are both highly pre-
ferred. This leaves us with three groups of pref-
erence orders, namely CY{O,S}X, YXC{O,S}, and
Y,C{O,S}X. Assuming that ORIENTATION pre-
ceeds SIZE (because SIZE involves comparisons),
three promising orders emerge, with a baseline, IA-
BASE2, which is predicted to perform much worse.

IA-BEST2: C >> Y >> O >> S >> X

IA-BEST3: Y >> X >> C >> O >> S

IA-BEST4: Y >> C >> O >> S >> X

IA-BASE2: X >> O >> S >> Y >> C



−LOC +LOC
IA-BEST1 IA-BASE1 GR/FB IA-BEST2 IA-BEST3 IA-BEST4 IA-BASE2 FB GR

Mean .83 .75 .79 .64 .61 .63 .54 .57 .58
Mode 1 .67 .8 .67 .67 .67 .67 .67 .67

PRP 24.1 7.4 18.7 10 4.6 3.9 1.7 6.6 5.8
tS 7.002∗ −5.850∗ 3.333∗ 3.934∗ 2.313 3.406 .705 .242 .544
tI 4.632∗ −1.797 1.169 4.574∗ 3.352∗ 4.313∗ 1.776 1.286 1.900

Table 2: Comparison to the Random Baseline (∗p < .05)

4.2 Differences between algorithms
Table 2 displays mean and modal (most frequent)
scores of each algorithm, as well as the perfect re-
call percentage (PRP: the proportion of Dice scores
of 1). Pairwise t-tests comparing each algorithm
to RAND are reported using subjects (tS) and items
(tI ) as sources of variance. These figures average
over all three Cardinality/Similarity conditions; we
return to the differences between these below.

With the exception of IA-BASE, the different ver-
sions of IA performed best on both datasets. In
the simpler −LOC dataset, IA-BEST1 achieved a
modal score of 1 24% of the time. Both the modal
score and the PRP of GR/FB were lower. Only IA-
BEST1 was significantly better than RAND both by
subjects and items. This suggests that while IA-
BEST1 reflects overall preferences, and increases the
likelihood with which a preferred attribute is in-
cluded in a description, a consideration of the rela-
tive discriminatory power of a property, or the over-
all brevity of a description, does not reflect human
tendencies.

A comparison of IA-BEST1 to FB/GR on this
dataset showed that the IA was significantly better,
though this only approached significance by items.
(tS = 2.972, p = .006; tI(19) = 2.117, p = .08).
Though this ostensibly supports the claim of Dale
and Reiter (Dale and Reiter, 1995), it should be dis-
cussed in the light of the performance of IA-BASE1,
which performed significantly worse than RAND by
subjects, as shown in Table 23, indicating a very
substantial impact of the attribute order.

In the +LOC dataset, there is an overall decline in
the algorithms’ performance. The main reason for
the much poorer performance of FB and GR on this
dataset (neither is better than RAND) is that these al-
gorithms do not select preferred attributes with the
same frequency as the better-performing orders of
the IA, since the chances of selecting them are con-
tingent on their discriminatory power.

3This is indicated by the negative value of tS and tI .

−LOC +LOC
IA-BEST1 GR IA-BEST2 GR

SG .92 .8 .71 .59
PS .80 .74 .59 .56
PD .79 .79 .59 .59
FS 50.367∗ 22.1∗ 11.098∗ 1.893
FI 40.025∗ 2.171 13.210 ∗ ∗ .611

Table 3: Mean scores and effect of Plurality/Similarity
conditions ∗p < .001

A comparison of GR to FB in this dataset revealed
that the small difference in their mean scores was
not significant (t1(24) = .773, ns; t2(19) = 1.455,
ns). Pairwise contrasts involving IA-BEST2 showed
that it performed significantly better than both FB
(tS = 4.235, p < .05; tI = −2.539, ns) and GR
(tS = 4.092, p < .05; tI = 2.091, ns), though only
by subjects. This was also the case for IA-BEST4

against FB (tS = 3.845, p = .01; tI = 2.248, ns),
though not against GR (tS = 3.072, ns; tI = 1.723,
ns). None of the comparisons involving IA-BEST3

showed a significant difference. Once again, the
performance of the IA on the more complex dataset
displays a strong dependency on the predetermined
attribute order; this is supported by the fact that only
IA-BEST2 was significantly better than RAND across
the board.

4.3 Plurals and similarity
The final part of the analysis considers the relative
performance of the algorithms on singular and plu-
ral data, focusing on the best-performing IA in each
dataset, and on GR (which was not significantly dif-
ferent from FB in +LOC). As Table 3 shows, the
algorithms’ performance declined dramatically on
the plural data; the difference between the Singu-
lar (SG), Plural Similar (PS) and Plural Dissimilar
(PD) domains is confirmed by a one-way ANOVA
with Cardinality/Similarity as independent variable,
though this is not significant for GR in +LOC.

With PS domains (where MD is always a conjunc-
tion), van Deemter’s algorithm will succeed at first



pass, without needing to search through combina-
tions, except that a disjunction is required for TYPE
values (e.g. 3a, below). People tend to be more re-
dundant, because they partition a set if its elements
have different values of TYPE, describing each ele-
ment separately (3b). In the PD condition, the main
problem is that the notion of ‘preference’ becomes
problematic once the search space is populated by
combinations of attributes, rather than literals.

(3) (a)
(
desk ∨ fan

)
∧ red ∧ large ∧ forward

(b) the large red desk facing forward and the
large red fan facing forward

4.4 Differences between subjects
Individual differences are a difficult issue for NLG
(Reiter and Sripada, 2002), partly because it is un-
clear whether NLG systems should use some aver-
age of different authors’ utterances, or seek to mir-
ror some homogeneous subset of authors. Here, we
quantify to what extent subjects differed in terms of
what algorithm matches each of them best. We write
“s selects algorithm A” as short for “A has the best
average match to s’s descriptions”. Our main ques-
tion is: Do different subjects “select” different al-
gorithms? Restricting attention to the most salient
points, we consider the preference orders used ear-
lier, and some other ones (using the same method to
compute overall match).

The first step is to find out which algorithms
are “selected” by each subject (two or more are
selected if they have the same average match
with a subjects’s descriptions). Consider those
18 subjects who never used location. These se-
lected C>>O>>S most often (16 times), with
C>>S>>O in second place (6 times); they se-
lected RAND once. When C>>S>>O or RAND
were selected, the difference in Dice scores with
C>>O>>S was minimal, at most .02. The dif-
ference with the worst-matching version of IA,
however, was often substantial, at an average of
.084. A typical case is one subject whose match
with C>>O>>S was optimal at .87, and with
C>>S>>O .86; her worst IA was IA-BASE1 at .76,
while GR and FB both scored .83, better than IA-
BASE1.

Now consider the 15 subjects who used loca-
tion consistently. Among these, variation was even
greater. As many as 14 different preference or-
ders (possibly ex equo) were selected at least once.
Among the remaining algorithms, RAND and IA-
BASE2 were not selected by any subject, nor were

GR and FB. While the version of IA selected by
a subject invariably matched its selecting subject
quite well (between .64 and .82, with an average
of .69), the IA version that matched a subject worst
was typically dismal (between .31 and .58, with an
average of .47), worse than GR (between .46 and
.67, with an average of .60).

We conclude that, even in the −LOC data, there
are non-negligible differences between subjects.
In the +LOC condition, these differences become
very substantial. Not only does the difference be-
tween the best and worst-matching algorithms be-
come large, but some subjects select algorithms
that differ from what psycholinguistic principles
predict. (An example of the latter is the order
C>>O>>S>>Y>>X, which is selected by 3 out
the 15 subjects who used location.)

5 Conclusions
In recent years, GRE has extended considerably be-
yond what was seen as its remit even ten years ago,
for example by taking linguistic context into ac-
count (Krahmer and Theune, 2002; Siddharthan and
Copestake, 2004). We have been conservative by
focussing on three classic algorithms discussed in
Dale and Reiter (1995) which are still at the heart
of most extensions. Only where extensions of these
algorithms were either particularly straightforward
(as in the case of simple purals) or necessitated by
our experimental setting (as in the case of numeric-
valued attributes) did we consider generalisations of
these algorithms.

We set out to ask “Does the Incremental Al-
gorithm IA match speakers’ behaviour better than
other algorithms? To answer this question, we
constructed and annotated a balanced corpus that
is semantically and pragmatically transparent, and
tested rigourously to what extent each algorithm
‘matched’ this gold standard. It turns out that the
answer depends on the preference order of the at-
tributes that are used by the IA. Our evaluation took
a speaker-oriented perspective. A reader-oriented
perspective might yield different results; indeed,
this is our main target for future follow-ups of this
work.

One lesson to be drawn from this study is of a
practical nature. Suppose a GRE algorithm were
required for an NLG system, to be deployed in a
novel domain. Though the IA is the prime can-
didate, which preference order should be chosen?
Psycholinguistic principles can be good predictors,



but an application may involve attributes whose de-
gree of preference is unknown. Investigating how
the subjects/authors of interest behave requires time
and resources, in the absence of which, an algorithm
like GR (suitably adapted to make sure that the TYPE
attribute is represented) may be a better bet.

Suppose a doctor has a choice of two medicine
cocktails with which to fight the flu. One of the
cocktails (nicknamed GR) produces reasonable re-
sults against all variants of the flu; the success of
the other cocktail (called IA) depends crucially on
a delicate balancing of ingredients: every epidemic,
and every patient, requires a different balance, and
finding the right balance is an art rather than a sci-
ence. – This, we feel, is the situation in GRE today.
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