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Abstract This paper presents a generic approach to sentence 
generation from RDF representations for the Semantic Web.  We 
argue that RDF representations used in the Semantic Web contain 
rich implicit linguistic information, and that it may be feasible to 
achieve adequate domain independent generation from these 
representations using only generic knowledge sources. 
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1 INTRODUCTION 
 
The next generation of the web, the Semantic Web, integrates 
various distributed web resources from different domains using the 
Resource Description Framework (RDF) [15] syntax (mainly 
applied to instance data and ontologies). Unfortunately, these 
representations using the RDF syntax are not naturally human-
readable like natural language. Natural Language Generation (NLG) 
techniques can help bridge the gap between the representations and 
natural languages in order that people who are not familiar with the 
RDF syntax can also access the information and knowledge for 
various purposes, e.g., educational applications that assist casual 
users to understand better about ontologies. Unfortunately, the cost 
of separately applying fine grained NLG techniques, which can 
generate text in high quality, to RDF representations for every 
domain would be very expensive and is thus not feasible. In fact, 
what most peop le require in this case is to basically understand the 
information or knowledge coded  in the RDF syntax. Therefore, 
exploring an economic and generic way of generating acceptably 
readable text from RDF representations for any domain is 
necessary.   
 
   Facing this challenge, we find that the biggest obstacle in the way 
is that it is hard to achieve lexicalisation (e.g., lexicalising concepts 
in RDF representations and making lexical choices) without 
domain dependent lexicons 2  . Although there is some early 
research on generation from RDF instance data [2] [17], they are 
domain dependent and require hand-made lexicons. In this paper 
we present a generic approach to generation from RDF 
representations without hand-built lexicons. The approach is 
motivated by the results of our experiments to analyse a corpus of 
ontologies. Lexicalisation is the most significant part of our 
approach, and thus it is the emphasis of this paper.  
 
   Before moving to the details of our approach, we first discuss, in 
Section 2, RDF representations as an input to NLG, and review  
some other related work that also tackles NLG from RDF 
representations. In Section 3, we briefly present the results of our 
experiment to analyse a corpus of ontologies and summarise our 
conclusions about the linguistic nature of RDF representations. 
Then, our approach to generation from RDF representations 
without lexicons is presented informally, focusing on explaining 

                                                 
1  University of Aberdeen, UK, email: {xsun,cmellish}@csd.abdn.ac.uk 
2  Constructing lexicons is usually time-consuming and it is therefore one 
of the bottlenecks for cheaply applying NLG.   
 

our algorithm for lexicalisation (Section 4). We illustrate the 
algorithm by generating a sentence from an example RDF graph 
step by step.  Finally, we present our initial conclusions and discuss 
our plans for future work in Section 5.  
 
 
2 RDF REPRESENTATIONS AS INPUT TO 

NLG 
 
Different NLG systems usually take different formats of input 
according to their generation strategies. Apart from conventional 
template-based approaches, which generate text using predefined 
patterns of discourse with blank spaces that need to be filled by 
users or applications, input to NLG systems could be roughly 
divided into two categories: tree-like notations, and non-
hierarchical representations. A tree-like input notation is usually a 
semantic representation consisting of a predicate with its 
arguments. The predicate is lexicalised as the main verb of the 
sentence and the arguments are lexicalised as the complements of 
the main verb. In this kind of input, the semantics of sentences 
must be fully and explicitly represented using “tree” structures and 
descriptive constraints are often attached to the structures to 
provide control information. The advantage of using tree-like 
notations as inputs is that rich linguistic information and control 
information in the input enable NLG systems (e.g., KPML [1], and 
FUF/Surge [6]) to generate text of very high quality. However, as 
[11] discusses, dominance relationships between nodes in the 
semantics are often language-dependent and are not always 
preserved across languages, and the tree-like semantics assumption 
leads to simplifications which reduce the paraphrasing power of the 
generator. The other main type of input is non-hierarchical 
representations. The key idea of using non-hierarchical 
representations as input is that input to generators should represent 
semantics in a language-independent way and try to carry as little 
as possible linguistic information, so that the input is relatively 
“unbiased” and can leave sufficient room for generators to develop 
their paraphrasing power. Input of non-hierarchical representations 
can help overcome language boundaries because of the language 
independent nature of semantics. This is very useful for generating 
in multiple languages. A representative piece of work using non-
hierarchical representations is [11]. In this work the inputs to the 
system are conceptual graphs [14]. They adopt an approximate 
matching strategy to map input conceptual graphs onto appropriate 
syntactic representations using mapping rules, which are 
declaratively specified in advance. The syntactic representations 
used in their work exploit the ideas of D-Tree Grammar 3 . 
Regardless of the exact input representations, NLG systems apart 
from template-based approaches require hand-built lexicons to 
achieve lexicalisation.  
 
    What kind of input representation is RDF? What kind of text do 
we need to generate from RDF representations? RDF was 
originally intended for situations in which information needs to be 
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processed by applications, rather than being only displayed to 
people. The information is logically represented using RDF syntax.              
In other words, RDF provides a common framework for expressing 
this information so it can be exchanged between applications 
without loss of meaning [15]. RDF representations belong to the 
class of non-hierarchical representations, because fundamentally 
they are graphs, rather than trees. Thus generation from RDF is 
similar to generation from semantic networks [13] or conceptual 
graphs. However we argue that RDF representations are more than 
logical representations, because they also contain rich linguistic 
information which can be used to greatly improve the quality of 
generation. Let’s see an example. The group of RDF triples shown 
in figure 1 may be presented in natural language as: 
 
LongridgeMerlot is a kind of Merlot. It has property locatedIn with 
value NewZealandRegion, property hasMaker with value 
Longridge, property hasSugar with value Dry, property 
hasFlavour with value moderate and property hasBody with value 
Light,  
 
if these triples are seen as pure logical representations. However, a 
much better text could be made from these triples:  
 
LongridgeMerlot is a kind of Merlot with dry sugar, moderate 
flavour and light body. It is located in the New Zealand Region and 
it has maker Longridge.  
 

In the second case, firstly, we have recognized that 
LongridgeMerlot is the subject of the realised sentence because it 
is the subject of all the triples. Then we have figured out that 
Merlot, which is a noun, is the type of LongridgeMerlot by 
recognising RDF:type, thus the triple (LongridgeMerlot, RDF:type, 
Merlot) may be expressed as a short sentence consisting of a noun 
phrase (NP), LongridgeMerlot,  and a verb phrase (VP), is a kind of 
Merlot, or a Noun phrase (NP), the Merlot LongridgeMerlot 
(please note that there may be more than one syntactic form for 
each triple, but here we only use one of them to demonstrate our 
idea). For the rest of the triples, hasSugar Dry (VerbNoun Adj.), 
hasFlavor Moderate (VerbNoun Adj.), hasBody Light (VerbNoun 
Adj.), hasMaker Longridge (VerbNoun Noun) and so on, we have 
turned them all to VPs, has dry sugar, has moderate flavour, has 
light body, has maker Longridge and so on. In order to get a more 
balanced sentence, the last three triples in the figure have been 
lexicalised as prepositional phrases (PP), with dry sugar, with 
moderate flavour and with light body. Then, we have aggregated 
the PPs to one PP, with dry sugar, moderate flavour and light body. 
Finally, we have integrated the syntactic segments to construct the 
sentence. In this case, we do not need any domain dependent 
lexicon to lexicalise the terms of the input. What we require here is 
the linguistic knowledge that can help us determine the 
combinations of words in these property and object names and 
reconstitute these “partially-lexicalised” fragments. Please note that 
the example of RDF graph here is a tree, but in practice RDF 
graphs may be in non-tree shapes.  

 
 

 
 
 
 
 
 
 

3 EXPLORING THE LINGUISTIC NATURE 
OF RDF REPRESENTATIONS 

 
In order to test our assumption that RDF representations in the 
scenario of the Semantic Web are not only logical representations 
but also contain rich linguistic information, we carried out an initial 
experiment (see [10] for more details about the results of our 
experiment). For this, we wrote a Java program using the Google 
API to help us look for online ontologies coded in OWL4[16]. We 
obtained around five thousand links; however only some of these 
links were able to provide us with real ontology files, because 
firstly, Google limits its API not to be accessed more than one 
thousand times per day, and also because some of the links were 
not available. In total we collected 882 ontology files coded in 
OWL (111 Mb) as our corpus. In analysing these ontologies, we 
were interested in analysing the structure of two kinds of names: 
names of classes and names of properties. In order to detect the 
English words contained in these names, we used the WordNet [7] 
API to help us recognise English words occurring in these names. 
Each name is associated with a pattern recording its analysis as a 
sequence of parts of speech, where Noun etc. name standard parts 
of speech, Than and Or are used for particular closed class 
words that appeared in the corpus, Un names an unknown word 
and C names a capital letter not starting a recognised word 
(sequences of capital letters were not further analysed). So, for 
instance, GreaterThanOrEqual might be analysed as 
AdjThanOrAdj and Student_IP might be analysed as  NounCC. 
Because there are no agreed rules for how to name concepts, 
people use various ways of giving names, which can be very long 
(Muscle_Layer_of_Secondary_Duct_of_Left_Coagulating_Gland), 
or even partially or entirely meaningless (ICD10).  
 
 
    In all, we found 3003 different patterns for class names (where 
72% of names ended with nouns) and similar variation in property 
names (where 65% of names started with verbs). The most 
encouraging finding from this experiment was that only 14% of 
class names were totally unrecognised, and most property names 
(97%) could be at least partly recognised. Clearly, there is a 
considerable amount of linguistic material in these names, which 
implies that there is also a considerable amount of linguistic 
material in RDF representations.  

   Although RDF was originally intended for situations in which 
information needs to be processed by applications, rather than 
being only displayed to people, as we see from our experiment, 
RDF representations also contain significant rich linguistic 
information. This provides us with a good resource to help 
overcome the problem of achieving lexicalisation without lexicons. 
For example, (id309 rdf:type RedWine) (id309 hasColour red) can 
be realised as “id309 is a  type of RedWine and has a property, 
hasColour, with value red”, which has too much “RDF flavour”. 
But by lexicalising the concepts using the hidden linguistic 
information, the generation can be “id309 is a type of red wine, and 
it has red colour.” which is much more natural, though there is still 
a weak “RDF flavour” left.  

                                                 
4  OWL is the most standard ontological language so far using the RDF 
syntax, and we assume that ideally RDF instance data should be all defined 
by ontologies in the scenario of the Semantic Web. Therefore, in theory 
results from the analy sis of OWL ontologies may be representative of the 
nature of RDF representations which include both instance data and 
ontological data.  Figure  1.   A simple example of an RDF representation 

RDF triples  
( LongridgeMerlot, RDF:type, Merlot) 
( LongridgeMerlot, locatedIn, NewZealandRegion) 
( LongridgeMerlot, hasMaker,Longridge) 
( LongridgeMerlot, hasSugar, Dry) 
( LongridgeMerlot, hasFlavor, Moderate) 
( LongridgeMerlot, hasBody, Light) 



    So far the examples used in this work are all from RDF instance 
data, which may be seen as “flat data”. However, other 
representations using the RDF syntax could be much more 
complex than flat data, e.g., DAML/OIL [4] and OWL axioms. 
These representations have their own specialised terminologies, 
which, however, still obey the RDF syntax, and thus can be 
mapped onto RDF graphs. Although these representations can be 
viewed as sub-domains of RDF syntax and can be handled using 
the RDF syntax, the text generated from these representations 
purely based on the RDF syntax may be odd or even unreadable. 
So if we know about the syntaxes of these sub-domains, better 
output could be produced. For example, the three triples using the 
OWL syntax: 

(redWine owl:Restriction  _restriction1) 

(_restriction1 owl:onProperty hasColour) 

( _restrction1 owl:allValuesFrom red) 

could be turned into text as, 

 redWine can only have red colour 

which is better than the generation purely based on the RDF syntax: 

redWine has a restriction _restriction1, which is on property 
hasColour and has all values from red  

(in this example we have assumed that the implicit linguistic 
information hidden in the names can be understood). From this 
example, it is clear that understanding domain syntaxes is essential 
for generating naturally readable text.  Therefore it will always be 
useful to be able to supplement default generation based on generic 
linguistic knowledge with special rules capturing arbitrary 
conventions for the domain. Currently, OWL is becoming the 
standard way to express ontologies in RDF. Our strategy is to 
explore the two extreme ends of RDF representations, RDF 
instance data and OWL data.  At the current stage, we are applying 
our method of “free” lexicalisation to RDF instance data, but we 
will apply the idea to OWL in the near future.  

 
 
4 “FREE LEXCALISATION” AND 

GENERATION FROM RDF 
REPRESENTATIONS 

 
The input to our generator is a group of RDF triples representing a 
connected RDF graph and the output is a piece of text presenting 
the input. By default the generator assumes that the information 
carried by the input RDF graph is not too much for a single 
sentence (currently, we allow no more than 10 triples per input ). 
Roughly speaking, our generation strategy is a microplanning 
focused strategy, which includes the conventional NLG processes 
lexicalisation and aggregation (but no referring expression 
generation). The main feature of this strategy is that our 
lexicalisation is “lexicon free” and takes place throughout the 
entire microplanning stage, interacting with aggregation. So, seen 
from this aspect, our strategy is a lexicalisation motivated strategy. 
In this section, we first introduce our methodology for 
lexicalisation and then informally present  our generation algorithm.  

4.1    “Free” lexicalisation 
 
Before moving to our idea about how to achieve “free” 
lexicalisation by making use of the linguistic information hidden in 
RDF graphs, it is worth while introducing lexicalisation in theory. 
Lexicalisation is a task which focuses on the problem of choosing 
which words should be used to pick out or describe particular 
domain concepts or entities [12]. Generally there are two types of 
lexicalisation, lexical realisation and true lexical choice [3]. In the 
first case the lexicalisation process itself does little more than 
decide fine details of the realisation of lexemes, while in the 
second case significant decisions should be made about the choices 
between different lexemes representing essentially the same 
propositional content. In our work, we have to deal with both of 
these cases.   
 
   In our case of lexicalising RDF representations, we have to be 
able to do lexical realisation and true lexical choice depending on 
the implicit linguistic information that input RDF triples contain. 
We find some terms that contain adequate linguistic information 
can be directly lexicalised by simply separating the words in these 
terms and making up necessary auxiliary verbs or prepositions, e.g., 
the RDF triple, (A, greater-than-or-equal-to, B) can be realised to, 
A is greater than or equal to B by lexicalising the predicate to is 
greater than or equal to as a verb phrase (VP). But some terms 
only contain “key words”, which must appear in the final 
lexicalised forms, e.g., the predicate in the triple (A, Colour, red), 
so we have to compensate by adding appropriate words to make a 
complete and correct lexicalisation. Because the terms containing 
only “key words” leave us room to lexicalise them in quite 
different ways, we sometimes have to face the challenge of true 
lexical choice, e.g., (A, Colour, red) may be lexicalised as A has 
colour red,  A has red colour, A with red colour  or red A.  

   The discussion above only concerns the situation of lexicalising 
single RDF triples, however this is a very restricted case. When a 
group of RDF triples (an RDF graph) needs to be realised, 
lexicalisation becomes much more complicated because we have to 
consider not only how to lexicalise an isolated triple but also how 
to make appropriate lexical choice by considering the lexicalisation 
in the triple’s context. To be precise, we argue that there are three 
key factors that influence lexical choice in our case: 

1. Consistency and potential for aggregation. 
Lexicalisation of a triple should be consistent with the 
lexicalisations of the triples in its neighbourhood which 
is the group of triples sharing the same subject. This 
notion may be extended in other RDF representations, 
e.g., OWL. An RDF graph may be viewed as a group of 
connected neighbourhoods. Currently, we only consider 
the case that lexicalised triples with the same main verb 
or preposition are consistent and have good potential for 
future aggregation, e.g., in the lexicalisations of the 
triples, (ID309 hasColour red) (ID309 hasTaste strong), 
we think ID309 has red colour and strong taste is more 
consistent than ID309 with red colour has strong taste.   

2. Contextual syntactic constraints . In some cases, earlier 
lexicalised RDF triples in an RDF graph force other 
triples which are connected with them in the graph to be 
lexicalised in a way syntactically consistent with the 
earlier lexicalisation. For example, assume that (ID309 
hasProducer producer123) and (producer123 
hasHistory 50_years) need to be presented in a sentence. 



After the first triple is realised as ID309 has producer 
producer123, the second triple has to be lexicalised as a 
relative clause rather a sentence so that the two 
lexicalisations can be integrated together to a sentence, 
i.e. as ID309 has producer producer123, which has a 
history of 50 years, To a large extent, the contextual 
syntactic constraints also need to take into account the 
co-occurrence patterns among the nodes in the input 
graphs, i.e. the relative clause is only allowed 
semantically because the object of the first triple is the 
same as the subject of the second. 

3. Balanced sentences. Sometimes when input RDF graphs 
are large, the final generated sentences may contain a 
large NP as the main subject with a short VP, or vice 
versa, a short subject with a large VP of complex 
structure. How can we avoid these extreme cases and 
obtain relatively balanced final generation of sentences? 
This requires us to consider the balance factor when 
making a lexical choice. So far, we only have a simple 
algorithm to achieve the balance of sentences by 
calculating the length of each possible lexicalisation and 
ordering them in the most balanced way (see Section 4.2 
for the details of the algorithm). Note that the notion of 
balance might vary among different kinds of RDF 
representations, e.g., RDF instance data and OWL data. 
Our current goal is to explore a generic way to calculate 
balance, which can be applied across RDF 
representations. If this proves to be unsuccessful, we 
will formulate strategies for RDF instance data and 
OWL separately.  

   In summary, the challenges to achieve automatic “free 
lexicalisation” are:  

1. Be able to understand the implicit linguistic information 
in the input and use this resource to lexicalise single RDF 
triples in most cases (including understanding the RDF 
syntax), also dealing with the worst case when there is no 
embedded linguistic information in input triples. Our 
system’s capability for dealing with the implicit 
linguistic resource is essential for us to meet this 
challenge.  Our experiment gives us encouragement that 
this will be possible. 

2. Make appropriate lexical choices to lexicalise RDF 
triples and make them consistent with their lexicalised 
neighbourhood triples.   

3. Make appropriate lexical choices to lexicalise RDF 
triples without breaking their contextual syntactic 
constraints.  

4. Be able to calculate the balance of generated sentences 
and produce relatively balanced generation.  

    For the first challenge, we decide to write rules based on the 
generic patterns discussed in Section 2 to map input RDF triples 
which have been pre-analysed using WordNet onto their 
lexicalised forms. The advantage here is that we map input directly 
to their syntactic forms without knowing any of the semantics 
hidden in the input (other NLG techniques, excluding template-
based ones, have to know the semantics of the input). A rule 

consists of two parts, patterns on the left that can match RDF 
triples, and all possible syntactic forms on the right which 
correspond to the patterns on the left. Basically, there are three 
kinds of rules. The first kind is the rules which are mainly applied 
to RDF triples containing almost all required lexical information. 
Usually, this kind of rule can only map one RDF triple onto one 
syntactic form.  A simplified rule is shown in Figure 2. Using this 
rule, for example, an RDF triple, (A, is_Physical_Part_of, B) can 
be lexicalised as, LTAG(S(NP(A) AuxVerb(is) NP(a physical part 
of B))).  The second kind of rule is rules which are mainly applied 
to the RDF triples containing only key lexical information. Usually, 
this kind of rule may produce multiple syntactic forms for one RDF 
triple.  For instance, (A, Colour, red) may be lexicalised using 
rule2 as LTAG(NP(NP* (NP(A) PP(PP(with) NP(red colour)))) or 
LTAG(S(NP(A) VP(VP(has) NP(red colour)))) or LTAG(NP(NP* 
(NP(A) WH VP(has) NP(red colour))) (The * indicates where an 
adjunction may take place. The details of our syntactic 
representations, based on Tree Adjoining Grammar [8], are not 
shown). The third kind of rules are defined to handle special cases 
in the RDF syntax; these are not discussed here. So far we have 
implemented 31 rules for exploiting the implicit linguistic 
information and 11 rules for RDF syntax. 

For the second challenge, currently we only view syntactic 
structures with the same main verb in the same neighbourhood as 
consistent structures. For the third challenge, we decide to use 
Lexicalised Tree-Adjoining Grammar (LTAG) [9] to represent our 
syntactic structures. In LTAG, every syntactic structure 
(elementary tree) explicitly points out what other syntactic 
structures are allowed to be adjoined with it  and how. In other 
words, the contextual syntactic constraints, are naturally expressed 
in the LTAG trees when we constructing these trees. Other work 
has also used the TAG family of grammar formalisms because of 
this key advantage 5  [5] [11]. For the last challenge, how we 
improve our algorithm of achieving balanced sentences  will 
depend on our future experiments. 

 

 

 

 

 

 

 

Figure 2. Two examples of system rules 

 

 

                                                 
5 The key advantage of TAG is that the extended domain of locality over 
which syntactic dependencies are stated and fun ction argument structure is 
captured [8]. We will not present any further details about LTAG here 
because of space limitations. Knowledge of LTAG is not required to 
understand this paper.  

Example  

Rule1:  (A,[AuxiliaryVerb][Adj][Noun][Prep],B)à 

LTAG (S(NP(A)+[AuxiliaryVerb] +NP([Adj]+[Noun]+[Prep] +B))) 

Rule2:  (A, [Noun] , [Adj] )à  LTAG (NP(NP*  (NP(A)+  

PP(PP(‘with’)+[Adj]+[Noun])))) OR  

LTAG (S(NP(A)+ VP(VP(‘has’)+NP([Adj]+[Noun]))))  OR   

LTAG(NP (NP*(NP(A)+WH+ VP(VP(’has’)+NP([Adj]+[Noun])))) 
 



4.2 Generation algorithm  

In this section we present the generation algorithm using a simple 
example of RDF instance data. At the current stage we have only 
applied the algorithm to RDF instance data, though the algorithm 
itself is designed to work also with OWL data. We limit the 
number of input RDF triples (=10) because we believe an input 
RDF graph carrying too much information should not be presented 
in one sentence. So it is the users’ responsibility to determine a 
sensible size of content as input to the generator.  For generation 
from large RDF graphs, users have to decompose the large graphs 
into smaller sub-graphs of sensible sizes as input and the generator 
outputs single sentence for each sub-graph separately. In general, 
domain-dependent principles must be used to determine the content 
and organisation of multiple sentence output, and so we do not 
consider this step here. Currently, our algorithm requires the input 
RDF graphs to be rooted directed acyclic graphs, which are more 
like tree structures. But our future goal is to develop an improved 
algorithm that can tackle RDF graphs as directed graphs with the 
full generality of Nicolov’s approach with conceptual graphs. At 
the current stage, an RDF graph can be tackled by our generator 
only if the graph can be transformed into a tree whose depth6 is no 
more than three. 

    The following algorithm is a possible solution to lexicalising 
RDF graphs. The patterns obtained from our experiment (section3) 
only provide us with the limited power to lexicalise single triples in 
RDF graphs and we have to find a way to integrate them. Our idea 
is to assemble the triples in the same neighbourhood, lexicalise the 
neighbourhoods according to our preferences, and integrate these 
lexicalised neighbourhoods into a complete syntax tree, which can 
be easily turned to text . Therefore, our algorithm is a bottom-up 
solution. Below are the details of the algorithm.  

The algorithm has three main steps, as follows: 

Step 1: Transforming an input RDF graph into a tree by splitting 
nodes with multiple input edges and producing an initial 
lexicalisation. 

1a:  G0 is an input RDF graph, T=Tree(G0) is the transformed  
graph as a tree structure,  

1b: N=Neighbourhood(T) is the set of neighbourhoods in T. 
L=LexNeighbourhood(T) is the set of lexicalised 
neighbourhoods, obtained by applying the rules to the triples in 
N. 

Step 2: Constructing a balanced noun phrase for every 
neighbourhood in the tree.  

2a: for all li ∈ L do 

                                                 
6 The depth of a graph is the length of the longest path which does not visit 
a node more than once.  For example, (A, P1,B1)(A, P2,B2)(B1,Q,C)  is a 
graph with depth 2, and (A, P,B)(B,Q,C) (C,L,D) is a graph with  depth 3. 
Our algorithm generates NPs corresponding to neighbourhoods of the 
transformed graphs, so large depth will lead to multiply embedded NPs, 
which can lead to readabilit y problems (even though they may be 
grammatically correct).  
 

2b:       if li contains more than 3 triples or li plus its sons contain   
more than 4 triples 

2c:          then    PP_shift(li) 

2d:         end if 

2e:  end for 

2f: for all li ∈ L do 

2g:  ai=Aggregate(li) //All lexicalised triples with the same 
verb and PP are aggregated. Any aggregated PP is shifted 
to stay with the subject of li. During the aggregation, 
related lexicalised triples are put together. So li is 
converted to a neighbourhood-level syntactic structure.      

2h:  end for 

Step 3: Constructing a complete lexicalised syntax tree. 

3a:  s = Adjoining(A) // this process adjoins all neighbourhood-
level syntactic structures, A, to a complete  lexicalised syntax 
tree, s.  

3b:  Realising(s) 

    We now explain some of these steps in more detail. The 
transformation in step 1a is not detailed here but is illustrated in the 
progression from Figure 4 to Figure 5. Here we focus on steps 1b 
and 2 which are the key processes of the generation.  

    In step 1b, for every RDF triple t ∈Tree(G), Rule(t) is the result 
of lexicalising t to a  VP. By default every triple’s property and 
object can be lexicalised as a VP, but sometimes it can be also 
lexicalised as a PP (the lexical choice depends on the following 
processes). If T is the tree resulting from step 1a, Neighbourhood(T) 
is the partition of the triples in T into those subsets which share the 
same subject node. Thus, Neighbourhood(T) = {ni | i=1..m}, where 
m is the number of nodes in T that have outgoing triples, each ni is 
the set of triples with the same given subject, and in terms of triples, 
T = n1U n2 U…  U nm. Then LexNeighbourhood(T), the 
lexicalised neighbourhoods of T, is defined by: 

LexNeighbourhood(T)= {{Rule(t)|t∈ N}|N ∈ Neighbourhood(T)}  

A lexicalised neighbourhood li is a set of lexicalised triples which 
contains VPs. In every lexicalised neighbourhood, lexicalised 
triples that have the same verb are grouped as having potential for 
future aggregation. We use VPG to indicate a group of lexicalised 
triples (in a lexicalised neighbourhood) that have the same main 
verb, and VPGi to indicate the partition of li into subsets which 
have the same main verb. Now every lexicalised neighbourhood is 
ready to be turned into a NP plus relative clause by assigning the 
shared subject as the main subject of the clause and aggregating all 
lexicalised triples to get a main VP for the clause.   

    However, if a neighbourhood contains too many triples, this 
implies that an unbalanced relative clause with a small subject and 
a large aggregated VP may occur. Our solution is to re-lexicalise 
one or two triples (in the same VPG) that can also be turned into 
PPs and shift them to stay with the subject in order to achieve 



better balance.  We believe too much information should not be 
shifted to the subject in order to avoid an over-large subject, so no 
more than two triples are allowed to be PP-shifted.  

    Now we introduce how PP-shift works. In the algorithm, 
PP_shift(li), where li is a lexicalised neighbourhood, is triggered if 
li contains more than three lexicalised triples or its own triples p lus 
the triples in its son neighbourhoods 7  number more than four 
triples. We argue that it is important to maintain a good trade-off 
between the increased balance of the generation from a 
neighbourhood by shifting PPs and the increased complexity of the 
structure of the generation after the shift of PPs. For example, 
assume a sentence with the syntactic structure, 
NP1+VP(VP1+VP2+VP3), where all information carried by VP2 
can be PP-shifted and VP3 can be partially PP-shifted. In this 
example, we think that NP(NP1+PP2) + VP(VP1+VP3), obtained 
by PP-shifting the phrase VP2, will produce a better text  than 
NP(NP1+PP3)+VP(VP1+VP2+VP3), where PP3 is from  partially 
PP-shifting VP3 and VP3 is the rest after the shift, because the first 
case increases the balance and also reduces the complexity of the 
main VP of the sentence, while the second case increases the 
complexity of the entire structure though the balance is increased. 
We argue that if a neighbourhood, li, has too many VPGs (we think 
>2 is too many), the benefit of increased balance from a PP-shift 
that can not reduce the number of VPGs is counteracted by the 
increased complexity, and thus PP-shift in this case is not 
recommended. In the algorithm, if li contains more than 2 VPGs, 
PP_shift(li) is allowed only if the shift can reduce the number of 
VPGs; if li contains no more than 2 VPGs, PP-shifts may take 
place in either VPG (if both VPGs are available, the bigger one is 
chosen. In one VPG, PP-shift always takes one triple if there are 
not exactly two related available triples, e.g., (id728 family_name 
Green) and (id728 given_name Peter), which contain the same 
string apart from their verbs if they have). This is how PP-shift 
works in the algorithm.  

    As its output, the algorithm computes a set of local syntactic 
structures A, which contains a structure ai for each neighbourhood 
ni, and these are then adjoined to produce the final answer.  

   Now let’s see an example of generating a sentence from a 
simplified RDF graph in Figure 3 which is graphically shown in 
Figure 4. (step1) Firstly, the RDF graph is transformed into a graph 
with the tree structure shown in Figure 5. Using the rules in Figure 
3, the triples are lexicalised as short clauses with internal syntactic 
structure, e.g.,  

LTAG (S((NP(id728)+VP(“is a”+male))), 

LTAG(NP(NP*(NP(id728)+WH+VP(VP(’has’)+”a”+NP ( [family 
name] + [Green]))))  

and so on (* is where adjunction may take place, but details of 
adjunction are not presented here). There are three neighbourhoods 
in the example: neighbourhood 1 including triples 1-6, 
neighbourhood 2 including triples 7 and 8, and neighbourhood 3 
including triple 9. These give rise to three lexicalised 
neighbourhoods. (step2) In lexical neighbourhood 1 there are more 
than 3 triples and only 2 VPGs (a VPG for is and a VPG for has). 

                                                 
7 We call a neighbourhood A, whose subject is an object  of a triple in 
neighbourhood B, a son of neighbourhood B. This relation can also be 
applied among lexicalised neighbourhoods.   

According to the algorithm, triple 2 and triple 3 in the VPG for has 
are chosen for PP-shift (because 1. the VPG of has is bigger than 
the VPG of is and 2. the two triples are related because they both 
contain the string name). Then all lexicalised triples in 
neighbourhood 1 are aggregated to give the syntactic 
representation of: 

id728 with family name Green and given name Peter is a male, and 
has a homepage http://www.xyz.ac.uk, an assistant Amy, and an 
office _recource1. 

(step3) All neighbourhood-level syntactic structures are adjoined,  

 id728 with family name Green and given name Peter, is a male 
and has a homepage http://www.xyz.ac.uk, an assistant Amy which 
has an address University of A, UK, and an office _recource1  
which has a telephone 12345 and an address University of A, UK. 

After some trivial operations like removing anonymous nodes, e.g., 
_resource1, the final text is  

id728 with family name Green and given name Peter, is a male and 
has a homepage http://www.xyz.ac.uk, an assistant Amy which has 
address University of A ,UK, and an office which has a telephone 
12345 and an address University of A, UK. 

4.3 Discussion 
 
Our generation algorithm can often generate adequately readable 
text from RDF instance data, and the quality of the output depends 
on how much linguistic information is carried by the input and 
what structure that the input graph has. In the extreme case that 
there is no linguistic information embedded in the input, we have 
default rules to produce text purely based RDF syntax. One 
drawback of the algorithm is the limited way in which related 
triples are detected (just looking for an occurrence of the same 
string). In addition, the parameters in the algorithm, e.g., currently, 
we set 2 as the maximum number of triples that a PP-shift allows, 
should be adjusted based on our future experiments. We have 
implemented this algorithm which works well with simple 
examples, but we have not yet done a formal evaluation because 
the quality of final output text depends on not only this algorithm 
but also other parts of our system, e.g., our developing algorithm 
that can transform an RDF graph into a tree. A formal evaluation 
will be done once we integrate all parts of our system.  
 
 
5 CONCLUSION AND FUTURE WORK 
 
In this paper our domain independent approach to sentence 
generation from RDF representations is presented. The main 
feature of our solution is that our lexicalisation is “free” and helps 
produce consistent and balanced sentence. So far we have applied 
our approach to RDF instance data, but we may face more 
difficulties in the generation from OWL, which is much more 
complicated than instance data. As our next task, we plan to do 
experiments on how real readers choose their preferred balanced 
sentences from the results of our generator, and will formulate a 
better strategy of balance based on the experiment results. 
 
 
 



 

 

 

 

 

 

 

 

Figure  3. Example input and rules 

 

 

Figure  4. Initial input RDF graph before transformation 

 

 

 

Figure  5. Input in tree structure after transformation 
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1. (id728 rdf:type male) 
2. (id728 family_name Green) 
3. (id728 given_name Peter)  
4. (id728 office _resource1) 
5. (id728 assistant Amy) 
6. (id728 homepage http://www.xyz.ac.uk) 
7. (_recource1 telephone 12345) 
8. (_recource1 address “University of A, UK”) 
9. (Amy address “University of A, UK” ) 

Rule1:  (A, [Noun1] , [Noun2])à  LTAG (NP(NP*  (NP(A)+ 
PP(PP(‘with’)+ [Noun1] +[Noun2]))))  OR  
LTAG(NP(NP*(NP(A)+WH+ VP ( VP (’has’)+ A/AN+ NP 
( [Noun1] + [Noun2])))) 
 
Rule2:  (A,rdf:type ,B)à  LTAG (S( (NP(B)+VP(“is a ”+A)))  


