
Domain Independent Sentence Generation
from RDF Representations for the Semantic Web

Xiantang Sun and Chris Mellish 1

Abstract This paper presents a generic approach to sentence
generation from RDF representations for the Semantic Web. We
argue that RDF representations used in the Semantic Web contain
rich implicit linguistic information, and that it may be feasible to
achieve adequate domain independent generation from these
representations using only generic knowledge sources.
Keywords: RDF graph, NLG, OWL

1 INTRODUCTION

The next generation of the web, the Semantic Web, integrates
various distributed web resources from different domains using the
Resource Description Framework (RDF) [15] syntax (mainly
applied to instance data and ontologies). Unfortunately, these
representations using the RDF syntax are not naturally human-
readable like natural language. Natural Language Generation (NLG)
techniques can help bridge the gap between the representations and
natural languages in order that people who are not familiar with the
RDF syntax can also access the information and knowledge for
various purposes, e.g., educational applications that assist casual
users to understand better about ontologies. Unfortunately, the cost
of separately applying fine grained NLG techniques, which can
generate text in high quality, to RDF representations for every
domain would be very expensive and is thus not feasible. In fact,
what most peop le require in this case is to basically understand the
information or knowledge coded in the RDF syntax. Therefore,
exploring an economic and generic way of generating acceptably
readable text from RDF representations for any domain is
necessary.

 Facing this challenge, we find that the biggest obstacle in the way
is that it is hard to achieve lexicalisation (e.g., lexicalising concepts
in RDF representations and making lexical choices) without
domain dependent lexicons 2 . Although there is some early
research on generation from RDF instance data [2] [17], they are
domain dependent and require hand-made lexicons. In this paper
we present a generic approach to generation from RDF
representations without hand-built lexicons. The approach is
motivated by the results of our experiments to analyse a corpus of
ontologies. Lexicalisation is the most significant part of our
approach, and thus it is the emphasis of this paper.

 Before moving to the details of our approach, we first discuss, in
Section 2, RDF representations as an input to NLG, and review
some other related work that also tackles NLG from RDF
representations. In Section 3, we briefly present the results of our
experiment to analyse a corpus of ontologies and summarise our
conclusions about the linguistic nature of RDF representations.
Then, our approach to generation from RDF representations
without lexicons is presented informally, focusing on explaining

1 University of Aberdeen, UK, email: {xsun,cmellish}@csd.abdn.ac.uk
2 Constructing lexicons is usually time-consuming and it is therefore one
of the bottlenecks for cheaply applying NLG.

our algorithm for lexicalisation (Section 4). We illustrate the
algorithm by generating a sentence from an example RDF graph
step by step. Finally, we present our initial conclusions and discuss
our plans for future work in Section 5.

2 RDF REPRESENTATIONS AS INPUT TO

NLG

Different NLG systems usually take different formats of input
according to their generation strategies. Apart from conventional
template-based approaches, which generate text using predefined
patterns of discourse with blank spaces that need to be filled by
users or applications, input to NLG systems could be roughly
divided into two categories: tree-like notations, and non-
hierarchical representations. A tree-like input notation is usually a
semantic representation consisting of a predicate with its
arguments. The predicate is lexicalised as the main verb of the
sentence and the arguments are lexicalised as the complements of
the main verb. In this kind of input, the semantics of sentences
must be fully and explicitly represented using “tree” structures and
descriptive constraints are often attached to the structures to
provide control information. The advantage of using tree-like
notations as inputs is that rich linguistic information and control
information in the input enable NLG systems (e.g., KPML [1], and
FUF/Surge [6]) to generate text of very high quality. However, as
[11] discusses, dominance relationships between nodes in the
semantics are often language-dependent and are not always
preserved across languages, and the tree-like semantics assumption
leads to simplifications which reduce the paraphrasing power of the
generator. The other main type of input is non-hierarchical
representations. The key idea of using non-hierarchical
representations as input is that input to generators should represent
semantics in a language-independent way and try to carry as little
as possible linguistic information, so that the input is relatively
“unbiased” and can leave sufficient room for generators to develop
their paraphrasing power. Input of non-hierarchical representations
can help overcome language boundaries because of the language
independent nature of semantics. This is very useful for generating
in multiple languages. A representative piece of work using non-
hierarchical representations is [11]. In this work the inputs to the
system are conceptual graphs [14]. They adopt an approximate
matching strategy to map input conceptual graphs onto appropriate
syntactic representations using mapping rules, which are
declaratively specified in advance. The syntactic representations
used in their work exploit the ideas of D-Tree Grammar 3 .
Regardless of the exact input representations, NLG systems apart
from template-based approaches require hand-built lexicons to
achieve lexicalisation.

 What kind of input representation is RDF? What kind of text do
we need to generate from RDF representations? RDF was
originally intended for situations in which information needs to be

3 D-Tree Grammar originated from Tree-Adjoining Grammars [8].

processed by applications, rather than being only displayed to
people. The information is logically represented using RDF syntax.
In other words, RDF provides a common framework for expressing
this information so it can be exchanged between applications
without loss of meaning [15]. RDF representations belong to the
class of non-hierarchical representations, because fundamentally
they are graphs, rather than trees. Thus generation from RDF is
similar to generation from semantic networks [13] or conceptual
graphs. However we argue that RDF representations are more than
logical representations, because they also contain rich linguistic
information which can be used to greatly improve the quality of
generation. Let’s see an example. The group of RDF triples shown
in figure 1 may be presented in natural language as:

LongridgeMerlot is a kind of Merlot. It has property locatedIn with
value NewZealandRegion, property hasMaker with value
Longridge, property hasSugar with value Dry, property
hasFlavour with value moderate and property hasBody with value
Light,

if these triples are seen as pure logical representations. However, a
much better text could be made from these triples:

LongridgeMerlot is a kind of Merlot with dry sugar, moderate
flavour and light body. It is located in the New Zealand Region and
it has maker Longridge.

In the second case, firstly, we have recognized that
LongridgeMerlot is the subject of the realised sentence because it
is the subject of all the triples. Then we have figured out that
Merlot, which is a noun, is the type of LongridgeMerlot by
recognising RDF:type, thus the triple (LongridgeMerlot, RDF:type,
Merlot) may be expressed as a short sentence consisting of a noun
phrase (NP), LongridgeMerlot, and a verb phrase (VP), is a kind of
Merlot, or a Noun phrase (NP), the Merlot LongridgeMerlot
(please note that there may be more than one syntactic form for
each triple, but here we only use one of them to demonstrate our
idea). For the rest of the triples, hasSugar Dry (VerbNoun Adj.),
hasFlavor Moderate (VerbNoun Adj.), hasBody Light (VerbNoun
Adj.), hasMaker Longridge (VerbNoun Noun) and so on, we have
turned them all to VPs, has dry sugar, has moderate flavour, has
light body, has maker Longridge and so on. In order to get a more
balanced sentence, the last three triples in the figure have been
lexicalised as prepositional phrases (PP), with dry sugar, with
moderate flavour and with light body. Then, we have aggregated
the PPs to one PP, with dry sugar, moderate flavour and light body.
Finally, we have integrated the syntactic segments to construct the
sentence. In this case, we do not need any domain dependent
lexicon to lexicalise the terms of the input. What we require here is
the linguistic knowledge that can help us determine the
combinations of words in these property and object names and
reconstitute these “partially-lexicalised” fragments. Please note that
the example of RDF graph here is a tree, but in practice RDF
graphs may be in non-tree shapes.

3 EXPLORING THE LINGUISTIC NATURE
OF RDF REPRESENTATIONS

In order to test our assumption that RDF representations in the
scenario of the Semantic Web are not only logical representations
but also contain rich linguistic information, we carried out an initial
experiment (see [10] for more details about the results of our
experiment). For this, we wrote a Java program using the Google
API to help us look for online ontologies coded in OWL4[16]. We
obtained around five thousand links; however only some of these
links were able to provide us with real ontology files, because
firstly, Google limits its API not to be accessed more than one
thousand times per day, and also because some of the links were
not available. In total we collected 882 ontology files coded in
OWL (111 Mb) as our corpus. In analysing these ontologies, we
were interested in analysing the structure of two kinds of names:
names of classes and names of properties. In order to detect the
English words contained in these names, we used the WordNet [7]
API to help us recognise English words occurring in these names.
Each name is associated with a pattern recording its analysis as a
sequence of parts of speech, where Noun etc. name standard parts
of speech, Than and Or are used for particular closed class
words that appeared in the corpus, Un names an unknown word
and C names a capital letter not starting a recognised word
(sequences of capital letters were not further analysed). So, for
instance, GreaterThanOrEqual might be analysed as
AdjThanOrAdj and Student_IP might be analysed as NounCC.
Because there are no agreed rules for how to name concepts,
people use various ways of giving names, which can be very long
(Muscle_Layer_of_Secondary_Duct_of_Left_Coagulating_Gland),
or even partially or entirely meaningless (ICD10).

 In all, we found 3003 different patterns for class names (where
72% of names ended with nouns) and similar variation in property
names (where 65% of names started with verbs). The most
encouraging finding from this experiment was that only 14% of
class names were totally unrecognised, and most property names
(97%) could be at least partly recognised. Clearly, there is a
considerable amount of linguistic material in these names, which
implies that there is also a considerable amount of linguistic
material in RDF representations.

 Although RDF was originally intended for situations in which
information needs to be processed by applications, rather than
being only displayed to people, as we see from our experiment,
RDF representations also contain significant rich linguistic
information. This provides us with a good resource to help
overcome the problem of achieving lexicalisation without lexicons.
For example, (id309 rdf:type RedWine) (id309 hasColour red) can
be realised as “id309 is a type of RedWine and has a property,
hasColour, with value red”, which has too much “RDF flavour”.
But by lexicalising the concepts using the hidden linguistic
information, the generation can be “id309 is a type of red wine, and
it has red colour.” which is much more natural, though there is still
a weak “RDF flavour” left.

4 OWL is the most standard ontological language so far using the RDF
syntax, and we assume that ideally RDF instance data should be all defined
by ontologies in the scenario of the Semantic Web. Therefore, in theory
results from the analy sis of OWL ontologies may be representative of the
nature of RDF representations which include both instance data and
ontological data. Figure 1. A simple example of an RDF representation

RDF triples
(LongridgeMerlot, RDF:type, Merlot)
(LongridgeMerlot, locatedIn, NewZealandRegion)
(LongridgeMerlot, hasMaker,Longridge)
(LongridgeMerlot, hasSugar, Dry)
(LongridgeMerlot, hasFlavor, Moderate)
(LongridgeMerlot, hasBody, Light)

 So far the examples used in this work are all from RDF instance
data, which may be seen as “flat data”. However, other
representations using the RDF syntax could be much more
complex than flat data, e.g., DAML/OIL [4] and OWL axioms.
These representations have their own specialised terminologies,
which, however, still obey the RDF syntax, and thus can be
mapped onto RDF graphs. Although these representations can be
viewed as sub-domains of RDF syntax and can be handled using
the RDF syntax, the text generated from these representations
purely based on the RDF syntax may be odd or even unreadable.
So if we know about the syntaxes of these sub-domains, better
output could be produced. For example, the three triples using the
OWL syntax:

(redWine owl:Restriction _restriction1)

(_restriction1 owl:onProperty hasColour)

(_restrction1 owl:allValuesFrom red)

could be turned into text as,

 redWine can only have red colour

which is better than the generation purely based on the RDF syntax:

redWine has a restriction _restriction1, which is on property
hasColour and has all values from red

(in this example we have assumed that the implicit linguistic
information hidden in the names can be understood). From this
example, it is clear that understanding domain syntaxes is essential
for generating naturally readable text. Therefore it will always be
useful to be able to supplement default generation based on generic
linguistic knowledge with special rules capturing arbitrary
conventions for the domain. Currently, OWL is becoming the
standard way to express ontologies in RDF. Our strategy is to
explore the two extreme ends of RDF representations, RDF
instance data and OWL data. At the current stage, we are applying
our method of “free” lexicalisation to RDF instance data, but we
will apply the idea to OWL in the near future.

4 “FREE LEXCALISATION” AND

GENERATION FROM RDF
REPRESENTATIONS

The input to our generator is a group of RDF triples representing a
connected RDF graph and the output is a piece of text presenting
the input. By default the generator assumes that the information
carried by the input RDF graph is not too much for a single
sentence (currently, we allow no more than 10 triples per input).
Roughly speaking, our generation strategy is a microplanning
focused strategy, which includes the conventional NLG processes
lexicalisation and aggregation (but no referring expression
generation). The main feature of this strategy is that our
lexicalisation is “lexicon free” and takes place throughout the
entire microplanning stage, interacting with aggregation. So, seen
from this aspect, our strategy is a lexicalisation motivated strategy.
In this section, we first introduce our methodology for
lexicalisation and then informally present our generation algorithm.

4.1 “Free” lexicalisation

Before moving to our idea about how to achieve “free”
lexicalisation by making use of the linguistic information hidden in
RDF graphs, it is worth while introducing lexicalisation in theory.
Lexicalisation is a task which focuses on the problem of choosing
which words should be used to pick out or describe particular
domain concepts or entities [12]. Generally there are two types of
lexicalisation, lexical realisation and true lexical choice [3]. In the
first case the lexicalisation process itself does little more than
decide fine details of the realisation of lexemes, while in the
second case significant decisions should be made about the choices
between different lexemes representing essentially the same
propositional content. In our work, we have to deal with both of
these cases.

 In our case of lexicalising RDF representations, we have to be
able to do lexical realisation and true lexical choice depending on
the implicit linguistic information that input RDF triples contain.
We find some terms that contain adequate linguistic information
can be directly lexicalised by simply separating the words in these
terms and making up necessary auxiliary verbs or prepositions, e.g.,
the RDF triple, (A, greater-than-or-equal-to, B) can be realised to,
A is greater than or equal to B by lexicalising the predicate to is
greater than or equal to as a verb phrase (VP). But some terms
only contain “key words”, which must appear in the final
lexicalised forms, e.g., the predicate in the triple (A, Colour, red),
so we have to compensate by adding appropriate words to make a
complete and correct lexicalisation. Because the terms containing
only “key words” leave us room to lexicalise them in quite
different ways, we sometimes have to face the challenge of true
lexical choice, e.g., (A, Colour, red) may be lexicalised as A has
colour red, A has red colour, A with red colour or red A.

 The discussion above only concerns the situation of lexicalising
single RDF triples, however this is a very restricted case. When a
group of RDF triples (an RDF graph) needs to be realised,
lexicalisation becomes much more complicated because we have to
consider not only how to lexicalise an isolated triple but also how
to make appropriate lexical choice by considering the lexicalisation
in the triple’s context. To be precise, we argue that there are three
key factors that influence lexical choice in our case:

1. Consistency and potential for aggregation.
Lexicalisation of a triple should be consistent with the
lexicalisations of the triples in its neighbourhood which
is the group of triples sharing the same subject. This
notion may be extended in other RDF representations,
e.g., OWL. An RDF graph may be viewed as a group of
connected neighbourhoods. Currently, we only consider
the case that lexicalised triples with the same main verb
or preposition are consistent and have good potential for
future aggregation, e.g., in the lexicalisations of the
triples, (ID309 hasColour red) (ID309 hasTaste strong),
we think ID309 has red colour and strong taste is more
consistent than ID309 with red colour has strong taste.

2. Contextual syntactic constraints . In some cases, earlier
lexicalised RDF triples in an RDF graph force other
triples which are connected with them in the graph to be
lexicalised in a way syntactically consistent with the
earlier lexicalisation. For example, assume that (ID309
hasProducer producer123) and (producer123
hasHistory 50_years) need to be presented in a sentence.

After the first triple is realised as ID309 has producer
producer123, the second triple has to be lexicalised as a
relative clause rather a sentence so that the two
lexicalisations can be integrated together to a sentence,
i.e. as ID309 has producer producer123, which has a
history of 50 years, To a large extent, the contextual
syntactic constraints also need to take into account the
co-occurrence patterns among the nodes in the input
graphs, i.e. the relative clause is only allowed
semantically because the object of the first triple is the
same as the subject of the second.

3. Balanced sentences. Sometimes when input RDF graphs
are large, the final generated sentences may contain a
large NP as the main subject with a short VP, or vice
versa, a short subject with a large VP of complex
structure. How can we avoid these extreme cases and
obtain relatively balanced final generation of sentences?
This requires us to consider the balance factor when
making a lexical choice. So far, we only have a simple
algorithm to achieve the balance of sentences by
calculating the length of each possible lexicalisation and
ordering them in the most balanced way (see Section 4.2
for the details of the algorithm). Note that the notion of
balance might vary among different kinds of RDF
representations, e.g., RDF instance data and OWL data.
Our current goal is to explore a generic way to calculate
balance, which can be applied across RDF
representations. If this proves to be unsuccessful, we
will formulate strategies for RDF instance data and
OWL separately.

 In summary, the challenges to achieve automatic “free
lexicalisation” are:

1. Be able to understand the implicit linguistic information
in the input and use this resource to lexicalise single RDF
triples in most cases (including understanding the RDF
syntax), also dealing with the worst case when there is no
embedded linguistic information in input triples. Our
system’s capability for dealing with the implicit
linguistic resource is essential for us to meet this
challenge. Our experiment gives us encouragement that
this will be possible.

2. Make appropriate lexical choices to lexicalise RDF
triples and make them consistent with their lexicalised
neighbourhood triples.

3. Make appropriate lexical choices to lexicalise RDF
triples without breaking their contextual syntactic
constraints.

4. Be able to calculate the balance of generated sentences
and produce relatively balanced generation.

 For the first challenge, we decide to write rules based on the
generic patterns discussed in Section 2 to map input RDF triples
which have been pre-analysed using WordNet onto their
lexicalised forms. The advantage here is that we map input directly
to their syntactic forms without knowing any of the semantics
hidden in the input (other NLG techniques, excluding template-
based ones, have to know the semantics of the input). A rule

consists of two parts, patterns on the left that can match RDF
triples, and all possible syntactic forms on the right which
correspond to the patterns on the left. Basically, there are three
kinds of rules. The first kind is the rules which are mainly applied
to RDF triples containing almost all required lexical information.
Usually, this kind of rule can only map one RDF triple onto one
syntactic form. A simplified rule is shown in Figure 2. Using this
rule, for example, an RDF triple, (A, is_Physical_Part_of, B) can
be lexicalised as, LTAG(S(NP(A) AuxVerb(is) NP(a physical part
of B))). The second kind of rule is rules which are mainly applied
to the RDF triples containing only key lexical information. Usually,
this kind of rule may produce multiple syntactic forms for one RDF
triple. For instance, (A, Colour, red) may be lexicalised using
rule2 as LTAG(NP(NP* (NP(A) PP(PP(with) NP(red colour)))) or
LTAG(S(NP(A) VP(VP(has) NP(red colour)))) or LTAG(NP(NP*
(NP(A) WH VP(has) NP(red colour))) (The * indicates where an
adjunction may take place. The details of our syntactic
representations, based on Tree Adjoining Grammar [8], are not
shown). The third kind of rules are defined to handle special cases
in the RDF syntax; these are not discussed here. So far we have
implemented 31 rules for exploiting the implicit linguistic
information and 11 rules for RDF syntax.

For the second challenge, currently we only view syntactic
structures with the same main verb in the same neighbourhood as
consistent structures. For the third challenge, we decide to use
Lexicalised Tree-Adjoining Grammar (LTAG) [9] to represent our
syntactic structures. In LTAG, every syntactic structure
(elementary tree) explicitly points out what other syntactic
structures are allowed to be adjoined with it and how. In other
words, the contextual syntactic constraints, are naturally expressed
in the LTAG trees when we constructing these trees. Other work
has also used the TAG family of grammar formalisms because of
this key advantage 5 [5] [11]. For the last challenge, how we
improve our algorithm of achieving balanced sentences will
depend on our future experiments.

Figure 2. Two examples of system rules

5 The key advantage of TAG is that the extended domain of locality over
which syntactic dependencies are stated and fun ction argument structure is
captured [8]. We will not present any further details about LTAG here
because of space limitations. Knowledge of LTAG is not required to
understand this paper.

Example

Rule1: (A,[AuxiliaryVerb][Adj][Noun][Prep],B)à

LTAG (S(NP(A)+[AuxiliaryVerb] +NP([Adj]+[Noun]+[Prep] +B)))

Rule2: (A, [Noun] , [Adj])à LTAG (NP(NP* (NP(A)+

PP(PP(‘with’)+[Adj]+[Noun])))) OR

LTAG (S(NP(A)+ VP(VP(‘has’)+NP([Adj]+[Noun])))) OR

LTAG(NP (NP*(NP(A)+WH+ VP(VP(’has’)+NP([Adj]+[Noun]))))

4.2 Generation algorithm

In this section we present the generation algorithm using a simple
example of RDF instance data. At the current stage we have only
applied the algorithm to RDF instance data, though the algorithm
itself is designed to work also with OWL data. We limit the
number of input RDF triples (=10) because we believe an input
RDF graph carrying too much information should not be presented
in one sentence. So it is the users’ responsibility to determine a
sensible size of content as input to the generator. For generation
from large RDF graphs, users have to decompose the large graphs
into smaller sub-graphs of sensible sizes as input and the generator
outputs single sentence for each sub-graph separately. In general,
domain-dependent principles must be used to determine the content
and organisation of multiple sentence output, and so we do not
consider this step here. Currently, our algorithm requires the input
RDF graphs to be rooted directed acyclic graphs, which are more
like tree structures. But our future goal is to develop an improved
algorithm that can tackle RDF graphs as directed graphs with the
full generality of Nicolov’s approach with conceptual graphs. At
the current stage, an RDF graph can be tackled by our generator
only if the graph can be transformed into a tree whose depth6 is no
more than three.

 The following algorithm is a possible solution to lexicalising
RDF graphs. The patterns obtained from our experiment (section3)
only provide us with the limited power to lexicalise single triples in
RDF graphs and we have to find a way to integrate them. Our idea
is to assemble the triples in the same neighbourhood, lexicalise the
neighbourhoods according to our preferences, and integrate these
lexicalised neighbourhoods into a complete syntax tree, which can
be easily turned to text . Therefore, our algorithm is a bottom-up
solution. Below are the details of the algorithm.

The algorithm has three main steps, as follows:

Step 1: Transforming an input RDF graph into a tree by splitting
nodes with multiple input edges and producing an initial
lexicalisation.

1a: G0 is an input RDF graph, T=Tree(G0) is the transformed
graph as a tree structure,

1b: N=Neighbourhood(T) is the set of neighbourhoods in T.
L=LexNeighbourhood(T) is the set of lexicalised
neighbourhoods, obtained by applying the rules to the triples in
N.

Step 2: Constructing a balanced noun phrase for every
neighbourhood in the tree.

2a: for all li ∈ L do

6 The depth of a graph is the length of the longest path which does not visit
a node more than once. For example, (A, P1,B1)(A, P2,B2)(B1,Q,C) is a
graph with depth 2, and (A, P,B)(B,Q,C) (C,L,D) is a graph with depth 3.
Our algorithm generates NPs corresponding to neighbourhoods of the
transformed graphs, so large depth will lead to multiply embedded NPs,
which can lead to readabilit y problems (even though they may be
grammatically correct).

2b: if li contains more than 3 triples or li plus its sons contain
more than 4 triples

2c: then PP_shift(li)

2d: end if

2e: end for

2f: for all li ∈ L do

2g: ai=Aggregate(li) //All lexicalised triples with the same
verb and PP are aggregated. Any aggregated PP is shifted
to stay with the subject of li. During the aggregation,
related lexicalised triples are put together. So li is
converted to a neighbourhood-level syntactic structure.

2h: end for

Step 3: Constructing a complete lexicalised syntax tree.

3a: s = Adjoining(A) // this process adjoins all neighbourhood-
level syntactic structures, A, to a complete lexicalised syntax
tree, s.

3b: Realising(s)

 We now explain some of these steps in more detail. The
transformation in step 1a is not detailed here but is illustrated in the
progression from Figure 4 to Figure 5. Here we focus on steps 1b
and 2 which are the key processes of the generation.

 In step 1b, for every RDF triple t ∈Tree(G), Rule(t) is the result
of lexicalising t to a VP. By default every triple’s property and
object can be lexicalised as a VP, but sometimes it can be also
lexicalised as a PP (the lexical choice depends on the following
processes). If T is the tree resulting from step 1a, Neighbourhood(T)
is the partition of the triples in T into those subsets which share the
same subject node. Thus, Neighbourhood(T) = {ni | i=1..m}, where
m is the number of nodes in T that have outgoing triples, each ni is
the set of triples with the same given subject, and in terms of triples,
T = n1U n2 U… U nm. Then LexNeighbourhood(T), the
lexicalised neighbourhoods of T, is defined by:

LexNeighbourhood(T)= {{Rule(t)|t∈ N}|N ∈ Neighbourhood(T)}

A lexicalised neighbourhood li is a set of lexicalised triples which
contains VPs. In every lexicalised neighbourhood, lexicalised
triples that have the same verb are grouped as having potential for
future aggregation. We use VPG to indicate a group of lexicalised
triples (in a lexicalised neighbourhood) that have the same main
verb, and VPGi to indicate the partition of li into subsets which
have the same main verb. Now every lexicalised neighbourhood is
ready to be turned into a NP plus relative clause by assigning the
shared subject as the main subject of the clause and aggregating all
lexicalised triples to get a main VP for the clause.

 However, if a neighbourhood contains too many triples, this
implies that an unbalanced relative clause with a small subject and
a large aggregated VP may occur. Our solution is to re-lexicalise
one or two triples (in the same VPG) that can also be turned into
PPs and shift them to stay with the subject in order to achieve

better balance. We believe too much information should not be
shifted to the subject in order to avoid an over-large subject, so no
more than two triples are allowed to be PP-shifted.

 Now we introduce how PP-shift works. In the algorithm,
PP_shift(li), where li is a lexicalised neighbourhood, is triggered if
li contains more than three lexicalised triples or its own triples p lus
the triples in its son neighbourhoods 7 number more than four
triples. We argue that it is important to maintain a good trade-off
between the increased balance of the generation from a
neighbourhood by shifting PPs and the increased complexity of the
structure of the generation after the shift of PPs. For example,
assume a sentence with the syntactic structure,
NP1+VP(VP1+VP2+VP3), where all information carried by VP2
can be PP-shifted and VP3 can be partially PP-shifted. In this
example, we think that NP(NP1+PP2) + VP(VP1+VP3), obtained
by PP-shifting the phrase VP2, will produce a better text than
NP(NP1+PP3)+VP(VP1+VP2+VP3), where PP3 is from partially
PP-shifting VP3 and VP3 is the rest after the shift, because the first
case increases the balance and also reduces the complexity of the
main VP of the sentence, while the second case increases the
complexity of the entire structure though the balance is increased.
We argue that if a neighbourhood, li, has too many VPGs (we think
>2 is too many), the benefit of increased balance from a PP-shift
that can not reduce the number of VPGs is counteracted by the
increased complexity, and thus PP-shift in this case is not
recommended. In the algorithm, if li contains more than 2 VPGs,
PP_shift(li) is allowed only if the shift can reduce the number of
VPGs; if li contains no more than 2 VPGs, PP-shifts may take
place in either VPG (if both VPGs are available, the bigger one is
chosen. In one VPG, PP-shift always takes one triple if there are
not exactly two related available triples, e.g., (id728 family_name
Green) and (id728 given_name Peter), which contain the same
string apart from their verbs if they have). This is how PP-shift
works in the algorithm.

 As its output, the algorithm computes a set of local syntactic
structures A, which contains a structure ai for each neighbourhood
ni, and these are then adjoined to produce the final answer.

 Now let’s see an example of generating a sentence from a
simplified RDF graph in Figure 3 which is graphically shown in
Figure 4. (step1) Firstly, the RDF graph is transformed into a graph
with the tree structure shown in Figure 5. Using the rules in Figure
3, the triples are lexicalised as short clauses with internal syntactic
structure, e.g.,

LTAG (S((NP(id728)+VP(“is a”+male))),

LTAG(NP(NP*(NP(id728)+WH+VP(VP(’has’)+”a”+NP ([family
name] + [Green]))))

and so on (* is where adjunction may take place, but details of
adjunction are not presented here). There are three neighbourhoods
in the example: neighbourhood 1 including triples 1-6,
neighbourhood 2 including triples 7 and 8, and neighbourhood 3
including triple 9. These give rise to three lexicalised
neighbourhoods. (step2) In lexical neighbourhood 1 there are more
than 3 triples and only 2 VPGs (a VPG for is and a VPG for has).

7 We call a neighbourhood A, whose subject is an object of a triple in
neighbourhood B, a son of neighbourhood B. This relation can also be
applied among lexicalised neighbourhoods.

According to the algorithm, triple 2 and triple 3 in the VPG for has
are chosen for PP-shift (because 1. the VPG of has is bigger than
the VPG of is and 2. the two triples are related because they both
contain the string name). Then all lexicalised triples in
neighbourhood 1 are aggregated to give the syntactic
representation of:

id728 with family name Green and given name Peter is a male, and
has a homepage http://www.xyz.ac.uk, an assistant Amy, and an
office _recource1.

(step3) All neighbourhood-level syntactic structures are adjoined,

 id728 with family name Green and given name Peter, is a male
and has a homepage http://www.xyz.ac.uk, an assistant Amy which
has an address University of A, UK, and an office _recource1
which has a telephone 12345 and an address University of A, UK.

After some trivial operations like removing anonymous nodes, e.g.,
_resource1, the final text is

id728 with family name Green and given name Peter, is a male and
has a homepage http://www.xyz.ac.uk, an assistant Amy which has
address University of A ,UK, and an office which has a telephone
12345 and an address University of A, UK.

4.3 Discussion

Our generation algorithm can often generate adequately readable
text from RDF instance data, and the quality of the output depends
on how much linguistic information is carried by the input and
what structure that the input graph has. In the extreme case that
there is no linguistic information embedded in the input, we have
default rules to produce text purely based RDF syntax. One
drawback of the algorithm is the limited way in which related
triples are detected (just looking for an occurrence of the same
string). In addition, the parameters in the algorithm, e.g., currently,
we set 2 as the maximum number of triples that a PP-shift allows,
should be adjusted based on our future experiments. We have
implemented this algorithm which works well with simple
examples, but we have not yet done a formal evaluation because
the quality of final output text depends on not only this algorithm
but also other parts of our system, e.g., our developing algorithm
that can transform an RDF graph into a tree. A formal evaluation
will be done once we integrate all parts of our system.

5 CONCLUSION AND FUTURE WORK

In this paper our domain independent approach to sentence
generation from RDF representations is presented. The main
feature of our solution is that our lexicalisation is “free” and helps
produce consistent and balanced sentence. So far we have applied
our approach to RDF instance data, but we may face more
difficulties in the generation from OWL, which is much more
complicated than instance data. As our next task, we plan to do
experiments on how real readers choose their preferred balanced
sentences from the results of our generator, and will formulate a
better strategy of balance based on the experiment results.

Figure 3. Example input and rules

Figure 4. Initial input RDF graph before transformation

Figure 5. Input in tree structure after transformation

REFERENCES

[1] J. A. Bateman. Enabling technology for multilingual natural

language generation: The KPML development environment.
Natural Language Engineering,3:15-55,1997.

[2] K. Bontcheva and Y. Wilks.. Automatic report generation from
ontologies: the MIAKT approach In Nineth International

Conference on Applications of Natural Language to
Information Systems (NLDB'2004). Manchester, UK, 2004

[3] L. Cahill. Lexicalisation in applied NLG systems. Technical
Report ITRI-99-04, Information Technology Research
Institute (ITRI), University of Brighton, 1998. Available at
http://www.itri.brighton.ac.uk/projects/rags.

[4] DAML Project. http://www.daml.org.
[5] B. Eddy, D. Bental and A. Cawsey. An algorithm for efficiently

generating summary paragraphs using tree-adjoining grammar.
In Proceedings of the 8th European Workshop on Natural
Language. Toulouse, France, 2001.

[6] M. Elhadad, and J. Robin. An overview of SURGE: a reusable
comprehensive syntactic realization component. Technical
Report 96-03. Department of Computer Science, Ben Gurion
University, Beer Sheva, Israel, 1996.

[7] C. Fellbaum. WordNet: An Electronic Lexical Database.
MIT Press, Cambridge, Massachusetts, 1998.

[8] A. K. Joshi. The relevance of tree adjoining grammar to
generation. In Natural Language Generation: New results in
Artificial Intelligence, Psychology and Linguistics-NATO
Advanced Research Workshop, pages 233-252, Nijmegen, The
Netherlands, 1986.

[9] A. K. Joshi and Y. Schabes. Tree adjoining grammars and
lexicalized grammars. In Maurice Nivat and Andreas Podelski,
editors, Definability and Recognizability of Sets of Trees ,
1991.

[10] C. Mellish and X. Sun. The Semantic Web as a Linguistic
Resource: Opportunities for Natural Language Generation.
Presented at the Twenty-sixth SGAI International Conference
on Innovative Techniques and Applications of Artificial
Intelligence, Cambridge, 2005.

[11] N. Nicolov, C. Mellish, and G. Richie. Approximate
Generation from Non-Hierarchical Representations. In
Proceedings of the 8th International Workshop on Natural
Language Generation, Herstmonceux Castle, UK, 1996.

[12] E. Reiter and R. Dale. Building applied natural language
generation systems. Natural Language Engineering 3, pages
57–88, 1997.

[13] R. Simmons and J. Slocum. Generating English discourse
from semantic networks, Comm. ACM 15, 891- 905 (1972).

[14] J. F. Sowa. Conceptual graphs summary. In Timothy E.
Nagle, Janice A. Nagle, Laurie L. Gerholz, and Peter W.
Eklund, editors, Conceptual structures: Current Research and
Practice, Ellis Horwood Series in Workshops, pages3-51.
Ellis Horwood Limited, London, England, 1992.

[15] W3C. RDF vocabulary description language 1.0: RDF schema
W3C proposed recommendation, In World Wide Web
Consortium, 2003, at http://www.w3.org/TR/rdf-schema

[16] W3C. OWL Web Ontology Language Reference, In World
Wide Web Consortium, 2004, at http://www.w3.org/TR/owl-
ref/

[17] G. Wilcock and K. Jokinen. Generating Responses and
Explanations from RDF/XML and DAML+OIL. In:
Knowledge and Reasoning in Practical Dialogue Systems,
IJCAI-2003, Acapulco, pages 58-63, 2003.

1. (id728 rdf:type male)
2. (id728 family_name Green)
3. (id728 given_name Peter)
4. (id728 office _resource1)
5. (id728 assistant Amy)
6. (id728 homepage http://www.xyz.ac.uk)
7. (_recource1 telephone 12345)
8. (_recource1 address “University of A, UK”)
9. (Amy address “University of A, UK”)

Rule1: (A, [Noun1] , [Noun2])à LTAG (NP(NP* (NP(A)+
PP(PP(‘with’)+ [Noun1] +[Noun2])))) OR
LTAG(NP(NP*(NP(A)+WH+ VP (VP (’has’)+ A/AN+ NP
([Noun1] + [Noun2]))))

Rule2: (A,rdf:type ,B)à LTAG (S((NP(B)+VP(“is a ”+A)))

