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Abstract 

This paper presents a new computational model for the generation of multimodal referring 

expressions, based on observations in human communication. The algorithm is an extension of 

the graph-based algorithm proposed by Krahmer et al. (2003) and makes use of a so-called 

Flashlight Model for pointing. The Flashlight Model accounts for various types of pointing 

gestures of different precisions. Based on a notion of effort the algorithm produces referring 

expressions combining language and pointing gestures. The algorithm is evaluated using two 

production experiments, with which spontaneous data is gathered on controlled input. The output 

of the algorithm coincides to a large extent with the utterances of the participants. However, an 

important difference is that the participants tend to produce overspecified referring expressions 

while the algorithm generates minimal ones.  We briefly discuss ways to generate overspecified 

multimodal references. 
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Introduction 

Human-computer interaction (HCI) studies the interaction between human users and 

computers which takes place at the user interface. Advances in HCI provide evidence that the use 

of multiple modalities, such as speech and gesture, for both input and output may result in 

systems that are more natural and efficient to use (Oviatt 1999). Consequently, current research 

in HCI shows an increased interest in developing interfaces that closely mimic human-human 

communication, and the development of “virtual characters”  or “embodied conversational 

agents”  (ECAs) that are able to communicate both verbally and non-verbally about a concrete 

spatial domain clearly fits this interest (e.g. Kopp et al., 2003; Cassell et al., 2000). A subtask 

that is addressed in many systems is that of identifying a certain object in a visual context 

accessible to both user and system.  This can be done for example by an ECA that points to the 

object, possibly in combination with a linguistic referring expression (RE). With the design of 

ECAs the question arises of how referring expressions in which linguistic information and 

gestures are combined should be generated automatically, but also how such multimodal REs are 

produced by humans (Beun & Cremers, 1998; Byron, 2003). 

The generation of referring expressions (GRE) is a central task in Natural Language 

Generation (NLG), and various algorithms which automatically produce REs have been 

developed (recent examples include Van Deemter  &  Krahmer, 2007; Van Deemter, 2002, 2006; 

Gatt 2006; Jordan & Walker, 2005; Gardent, 2002; Krahmer, et al. 2003). Existing GRE 

algorithms generally assume that both speaker and addressee have access to the same 

information. In most cases this information is represented by a knowledge base that contains the 

objects and their properties present in the domain of conversation.  A typical algorithm takes as 

input a single object (the target) and a set of objects (the distractors) from which the target 
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object needs to be distinguished (borrowing terminology from Dale & Reiter, 1995). The task of 

a GRE algorithm is to determine which set of properties is needed to single out the target from 

the distractors. This is known as content determination for REs. On the basis of this set of 

properties a distinguishing description in natural language can be generated; a description 

which applies to the target but not to any of the distractors.  

In general, there are multiple distinguishing descriptions for a given target. Consider, for 

instance, the chess configuration in Figure 1, with a circle around the target. This target can be 

described exclusively with linguistic features that express, say, that the target is a knight and that 

it is white. However, “ the white knight”  is not uniquely identifying, because there are two white 

knights on the board. Consequently, more or other information is needed to distinguish the target 

knight. For instance, the expression “ the white knight”  can be extended with several relational 

properties: “ in row 5”, “at position E5” , “ that is threatened by a black pawn”, etc. Alternatively, 

a multimodal referring expression may be used, consisting of a pointing gesture plus a 

linguistic description such as “ this knight” . Arguably, such a multimodal RE would be easier to 

process than an overlong linguistic description, certainly when the addressee is a beginning chess 

player who is perhaps not familiar yet with the structure of the board or with the names of the 

various pieces.  

<<Insert Figure 1>> 

This paper presents a novel algorithm that generates multimodal REs.  Pointing gestures 

are unique to human behavior and almost inevitable in human communication (c.f., Kita, 2004; 

Mc Neill, 1992). In contrast to the diversity of pointing gestures occurring in human 

conversation (e.g., Clark & Bangerter, 2004; Kendon, 2004; Kendon & Versante, 2003), the 

discussion in this paper is limited to pointing gestures that are performed by a hand with an 
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extended index finger that causes a projection of a straight line from the tip of the index finger to 

the intended referent. Various algorithms for the generation of multimodal REs have been 

proposed (c.f., Kranstedt & Wachsmuth, 2005; Lester et al. 1999; Andre & Rist, 1996; Claassen, 

1992; Reithinger, 1992)1 . Most of these are based on the assumption that a pointing gesture is 

precise and unambiguous. As soon as a pointing gesture is included, it directly eliminates the 

distractors and singles out the target. Consequently, the generated expressions tend to be 

relatively simple and usually contain no more than a head noun together with a pointing gesture. 

Moreover, most algorithms tend to be based on relatively simple, context-independent criteria for 

the decision whether a pointing gesture should be included or not.  

In contrast, the GRE algorithm that is presented in this paper discards some of these basic 

assumptions. The multimodal GRE algorithm is based on observations in human communication 

and it approaches the generation of REs as a compositional task in which language and gestures 

are combined in a natural way. A key feature in the proposed model is the principle of Minimal 

Cooperative Effort (Clark & Wilkes-Gibbs, 1986) stating that both the speaker’s effort in 

producing the description and the addressee’s effort in interpreting it should be minimal. When 

considering this notion of effort, the multimodal GRE algorithm might decide to use a pointing 

gesture to indicate a target, as an undemanding way of identification. In a domain with many 

similar objects a purely linguistic description might be too complex to produce by a speaker and 

to interpret by an addressee.  

Another assumption that is not retained by the algorithm presented in this paper is that a 

pointing gesture always has to be precise. The model for pointing that is proposed here allows 

for pointing gestures of different levels of precision, and likens a pointing gesture to the cone of 

a flashlight. If one holds a flashlight just above a surface (precise pointing), it covers only a 
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small area (the target object). Moving the flashlight away (imprecise pointing) enlarges the cone 

of light (shining on the target object but probably also on one or more other objects). A direct 

consequence of this Flashlight Model for pointing is that the amount of linguistic properties 

required to generate a distinguishing multimodal RE is predicted to co-vary with the kind of 

pointing gesture used. Consequently, the multimodal algorithm might decide to identify the 

target in Figure 1 with a precise pointing gesture combined with the linguistic description “this 

knight” . Alternatively, the algorithm could use a less precise pointing gesture which also 

includes other objects in its scope, in which case more linguistic information is necessary to 

ensure a distinguishing description. For instance, assuming the scope of the pointing gesture to 

include the black knight at F6, the accompanying linguistic description at least should contain 

the property “white” , as in “ the white knight” , to single out the target. 

Precise pointing has a high precision. Its scope is restricted to the target object, and this 

directly rules out the distractors. But, arguably, precise pointing is “expensive” ; the speaker has 

to make sure she points precisely to the target object in such a way that the addressee will be able 

to unambiguously interpret the RE. Imprecise pointing, on the other hand, has a lower precision -

--it generally includes some distractors in its scope--- but is intuitively less “expensive”. This 

intuition is in line with the alleged existence of neurological differences between precise and 

imprecise pointing. The former is argued to be monitored by a slow and conscious feedback 

control system, while the latter is governed by a faster and non-conscious control system located 

in the center and lower-back parts of the brain (e.g., Smyth & Wing, 1984; Bizzi & Mussa-

Ivaldi, 1990).  

In the computational model presented in this paper, the decision to point is based on a 

trade-off between the costs of pointing and the costs of a linguistic description. The latter are 
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determined by summing over the costs of the individual linguistic properties used in the 

description. Arguably, the costs of precise pointing are determined by two factors: the size of the 

target object (large objects are easier to point to than small objects) and the distance between the 

target object and the pointing device (objects that are near are easier to point to than objects that 

are further away). Below, Fitts’  law (a fundamental empirical law about the human motor system 

attributable to Fitts, 1954) is used to model the costs of pointing. It is argued that Fitts’  law 

allows the model to capture the intuition that imprecise pointing is cheaper than precise pointing.  

In this paper it is shown how multimodal REs as appearing in cooperative human 

communication can be generated automatically. The next section presents a multimodal GRE 

algorithm as an extension of the graph-based algorithm proposed by Krahmer et al. (2003). The 

algorithm integrates the Flashlight Model for pointing in order to combine linguistic material and 

pointing gestures dependent on a notion of effort. Next we describe two production experiments 

that were conducted to evaluate this multimodal GRE algorithm. Finally, in the discussion, the 

results of this study are taken as a starting point to discuss ongoing work that aims to improve the 

algorithm’s adaptation to human communication. 

 

A Computational Model for the Generation of Multimodal Referring Expressions 

Overview 

The algorithm described in this paper is a multimodal variant of the graph-based GRE 

algorithm described by Krahmer et al. (2003). The algorithm represents the domain of 

conversation as a labeled directed graph, to which we refer as the domain graph. The objects in 

a domain are modeled as the vertices (or nodes) in the graph. To generate a RE for a target 

object, the graph-based algorithm searches for a subgraph of the domain graph that uniquely 
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represents the target. Which solution is returned depends on the cost function used. The cost 

function can be used to assign weights to the edges that represent the properties and relations, 

thereby determining their order of preference.  

The graph-based approach has several advantages for GRE. One advantage is that there 

are many well-known search algorithms already in existence that deal with graph structures (e.g., 

Liebers, 2001; Messmer & Buncke, 1995, 1998; Eppstein, 1999). With the various existing 

search strategies in combination with proper cost functions, the graph-based algorithm can 

mimic existing GRE algorithms, such as those proposed by Dale (1989) and Dale & Reiter 

(1995). In this paper, we argue that the graph-based approach also lends itself well to the 

generation of multimodal REs. For that purpose, the domain graph is enriched with edges 

representing various kinds of pointing gestures. Since the algorithm presented here looks for the 

cheapest subgraph, pointing edges are selected only when linguistic edges are relatively 

expensive or when pointing is relatively cheap. 

 

Generating Multimodal Referring Expressions Using Graphs 

Domain Graphs  

Consider the example domain depicted in Figure 2, consisting of a set of objects with 

various properties and relations.2 For this particular domain, we have a the set of eight objects (D 

= {d1,…, d8} ), a set of properties of these objects (Prop = {black, white, pawn, knight, bishop, 

rook} ) and a set of relations between these objects (Rel = { left-of, right-of} ). This domain can be 

modeled as a labeled directed graph (which we will call the domain graph). The formal 

definition of domain graphs can be found in the appendix, where we will also list a number of 

other technical definitions. Our example domain can be represented as the graph in Figure 3. Not 
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all possible spatial relations are modeled in this domain graph under the assumption that a 

distinguishing description will not use a distant object as a relatum when a closer one can be 

selected.3 Notice that properties are represented as loops, while relations are modeled as edges 

between different vertices. 

<<Insert Figure 2>> 

<<Insert Figure 3>> 

Referring Graphs  

Suppose that given the example domain, a distinguishing description referring to d4 has to 

be generated. Then it has to be determined which properties and/or relations are required to 

single out d4 from its distractors. This is done by creating referring graphs, which at least 

include a vertex representing the target object. Informally, a vertex v (the target object) in a 

referring graph refers to a given object in the domain graph if and only if the referring graph can 

be “placed over”  the domain graph in such a way that v can be “placed over”  the vertex of the 

given object in the domain graph and each edge from the referring graph labeled with some 

property or relation can be “placed over”  a corresponding edge in the domain graph with the 

same label. Furthermore, a vertex-graph pair is distinguishing if and only if it refers to exactly 

one vertex in the domain graph. The informal notion of one graph being “placed over”  another 

corresponds with a well-known mathematical construction on graphs, namely subgraph 

isomorphism (defined in the appendix).  

Consider Figure 4 containing a number of potential referring graphs for d4, where the 

vertex denoting d4 is circled. The first one, H1 has all the properties of d4 and hence can refer to 

d4. It is not distinguishing, however: it can also be placed over d7 (the other large black knight), 

and thus fails to rule out this distractor. Graph H2 is distinguishing. Here, the referring graph can 
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only be placed over the intended referent d4 in the domain graph. A straightforward linguistic 

realization can be “a black knight to the left of a white pawn and to the right of a white pawn”.4 

Generally there is more than one distinguishing graph referring to an object. In fact, H2 is not a 

minimal distinguishing graph referring to d4. This is H3, which might be realized as “ the black 

knight to the right of a pawn”. This is a distinguishing description but not a particularly natural 

one; it is complex and arguably difficult for the addressee to interpret. In such cases, having the 

possibility of simply pointing to the intended referent would be very useful.  

<<Insert Figure 4>> 

Gesture Graphs 

Suppose a pointing gesture is directed at d4. Clearly this can be done from various 

distances and under various angles. The various hands in Figure 5 illustrate three levels of deictic 

pointing gestures, all under the same angle but each with different distances to the target object: 

precise pointing (P), imprecise pointing (IP) and very imprecise pointing (VIP). Here the 

presentation is limited to these three levels of precision and a fixed angle, although nothing 

hinges on this. Naturally, the respective positions of the speaker and the target object co-

determine the angle under which the pointing gesture occurs; this in turn fixes the scope of the 

pointing gesture and thus which objects are ruled out by it (namely, those objects fully outside of 

the scope). If these respective positions are known, then computing the scope of a pointing 

gesture is straightforward; but the actual mathematics falls outside the scope of this paper (but 

see Kranstedt et al. 2006). Here we assume that, based on the positions of the target object and 

the speaker, the algorithm is able to compute the scope of a pointing gesture and a gesture graph 

is constructed accordingly. 

<<Insert Figure 5>> 
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Just as properties and relations of objects can be expressed in a graph, so can various 

pointing gestures to these objects. All objects in the scope of a potential pointing gesture (with a 

certain degree of precision) are associated with an edge labeled with an indexed pointing gesture. 

Selecting this edge implies that all objects that fall outside the scope of the gesture are ruled out. 

This information is represented using a gesture graph (defined in the appendix). Figure 6 

displays a graph modeling the various pointing gestures in Figure 5. Notice that there is one 

gesture edge which is only associated with d4, the one representing precise pointing to the target 

object (modeled by edge Pd4). No other pointing gesture eliminates all distractors.  

<<Insert Figure 6>> 

Multimodal Graphs 

Now the generation of multimodal referring graphs is based on the combination of the 

domain graph (which is relatively fixed) with the deictic gesture graph (which varies with the 

target). To generate a multimodal RE for a target object v, the graph-based algorithm first has to 

construct the gesture graph Fv associated with that target object, in order to produce the 

multimodal graph M = Fv �  G (formal definition in the appendix). Thus, M represents the 

search space of the multimodal GRE algorithm.  As noted before, the search for a subgraph that 

uniquely describes the target object depends on the cost function used. A cost function assigns 

weights to the labeled edges in the graph. In the case of a multimodal graph both the costs of 

linguistic edges and the costs of gesture edges have to be determined. In the next section the cost 

functions for both kinds of edges are discussed.  

Cost Functions 

In the graph perspective there are many ways to generate a distinguishing RE for an 

object. Cost functions are used to give preference to some solutions over others. Costs are 
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associated with all subgraphs of the domain graph. The cost function is required to be 

monotonic. This implies that extending a graph with an edge can never result in a graph which is 

cheaper than the original graph. We shall assume that if H is a subgraph of G, the cost of H 

(notated Cost (H)) can be determined by summing over the costs associated with the vertices and 

edges of H.  

 

The Costs of Properties and Relations 

The cost of a subgraph is dependent on the costs associated with the edges in the graph. 

There are numerous ways in which costs can be assigned to edges. For instance, a cost function 

might simply associate each edge with a 1 point cost.  In that case, when searching for the 

cheapest subgraph the algorithm will output the smallest distinguishing subgraph, which leads to 

the generation of minimal descriptions. Another approach is to define a cost function that models 

the notion of preferred attributes by Dale & Reiter (1995); for empirical evidence see e.g., Beun 

& Cremers (1998). In object descriptions people generally tend to include type properties. If that 

does not suffice, first absolute properties like color may be used, followed by relative ones such 

as size. A more fine-grained cost function might even differentiate between costs within one kind 

of property. For instance, black can be cheaper than ebony, if black is considered more common 

than ebony (cf. the basic level values as proposed by Dale & Reiter, 1995 and Krahmer & 

Theune, 2002). In terms of costs, we may assume that the type property is for free (costs no 

points), whereas other properties are more expensive, with absolute properties assumed to be 

cheaper than relative ones. There is little empirical work on the cost of relations, but it seems 

safe to assume that for the chess domain relations are more expensive than properties. Relations 

are comparable to relative properties in that they cannot be verified on the basis of the intended 
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referent alone. In addition, using a relation implies that a second object, the relatum, needs to be 

described as well and describing two objects generally requires more effort than describing a 

single object.  

 

The Cost of Pointing 

Arguably, at least two factors co-determine the cost of pointing: (1) The size of the target 

object (the larger the object, the easier, and hence cheaper, the pointing gesture); and (2) The 

distance which the pointing device (in this case the hand) has to travel in the direction of the 

target object (a short distance is cheaper than a long distance). Interestingly, the pioneering work 

of Fitts (1954) captures these two factors in the Index of Difficulty (ID), which states that the 

difficulty to reach a target is a function of the size, or the width W, of the target and the distance 

to the target, or amplitude A. With each doubling of Distance and with each halving of Size the 

Index of Difficulty increases by 1 bit.  In recent years various alternatives for the original ID 

have been proposed. Here we use the alternative proposed by MacKenzie (1991), which starts 

counting from 1, ensuring that the ID is always positive: 

ID = Log2 (A / W + 1)  

As argued, it seems a reasonable assumption that imprecise pointing is cheaper than precise 

pointing; it rules out fewer distractors, but also requires less motor precision and effort from the 

speaker. In our domain, we can model this intuition using the Index of Difficulty in the following 

way. Distance is not interpreted as the distance from the current position of the hand to the target 

object, but rather as the distance from the current position of the hand to the target position of the 

hand. Thus, the smaller the distance from the current position of the hand to the target position 

for pointing, the lower the cost. In sum: if g is a pointing gesture, A is the distance from the 
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hand’s current position to its target position, and W is the size of target object, then the cost 

associated with that pointing gesture is defined as follows: 

Costs(g) = Log2 (A / W  + 1) 

Worked Example 

This section illustrates the algorithm with an example. The algorithm outputs the 

cheapest distinguishing graph for a target object, if one exists. Whether this cheapest graph will 

include pointing edges, and if so, of what level of precision, is determined by a trade-off between 

the respective costs of pointing and the costs of the linguistic edges. Interestingly, Piwek (2007) 

argues, based on a corpus study, that this trade-off may very per speaker (some speakers point 

easily, others only use pointing as a last resort). In terms of costs this means that for some 

speakers the relative costs of pointing are low (these speakers are thus likely to point), whereas 

for other speakers the relative costs for pointing are high. 

Suppose our goal is to generate a description for d4 from the scene graph G in Figure 3. 

To illustrate the workings of this function a specified cost function is needed. Let us assume that 

the distance from the current neutral position of the hand to the target position required for a 

precise pointing gesture to the target d4 is 15cm,  7cm for imprecise pointing and 3cm for very 

imprecise pointing. When, for the sake of simplicity, the size of the target is assumed to be 1cm, 

some easy calculations will show that the index of difficulty in the three cases is 4 bits, 3 bits and 

2 bits respectively. Thus, precise pointing (P) costs 4 points, imprecise pointing (IP) costs 3 

points and very imprecise pointing (VIP) has cost 2 points.5 Finally, let us assume for the sake of 

illustration that type edges (i.e. knight) are for free, color edges cost 1 point and relational edges 

2 points. 
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Figure 7 sketches the multimodal generation algorithm; and here we will apply it to d4 

(i.e. we call the function makeReferringExpression(d4, G)). First of all the deictic gesture graph 

Fd4, adding pointing edges of various levels of precision to d4, is constructed, and merged with 

G. This results in the multimodal graph M. The variable bestGraph, for the cheapest solution 

found so far, is initialized as the undefined graph �  (no solution has been found yet), and the 

referring graph under construction H is initialized as the graph only consisting of the vertex d4. 

Subsequently, the function findGraph is called with as parameters the target object (d4), the best 

graph so far (� ), the referring graph under construction (H) and the multimodal graph (M). Now 

the algorithm systematically tries all relevant subgraphs H of M. It starts from the graph which 

contains only the vertex d4 and recursively tries to extend this graph by adding adjacent edges 

(i.e., edges which start in d4 or possibly in any of the other vertices added later on to the H under 

construction). For each graph H it checks which objects in M (different from d4) the vertex-graph 

pair (d4, H) may refer to (“can be placed over” ); these are the distractors. As soon as this set is 

empty, a distinguishing graph referring to d4 has been found. This graph is stored in the variable 

bestGraph, the cheapest distinguishing graph found so far. In the end the algorithm returns the 

cheapest distinguishing graph which refers to the target, if one exists, otherwise it returns the 

undefined null graph� . In the current setup the latter possibility will never arise due to the 

presence of unambiguous pointing gestures (expensive though they may be).   

<<Insert Figure 7>> 

Which referring graph is the first to be found depends on the order in which the edges are 

tried (clearly this is a place where heuristics are helpful, e.g. it will generally be beneficial to try 

cheap edges before expensive ones). Let us say, for the sake of argument, that the first 

distinguishing graph which the algorithm finds is H2 from Figure 8. This graph costs 3 points. At 
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this point, graphs which are as expensive as this graph can be discarded (since due to the 

monotonicity constraint they will never end up being cheaper than the best solution found so far). 

In the current situation, the cheapest solution is H1 from Figure 8, which costs 2 points. The 

resulting graph could be realized as “ this knight”  combined with a very imprecise pointing 

gesture. Note that if pointing were cheaper (because the distance between the current position of 

the hand and the required position for precise pointing was, say, 3cm), the algorithm would 

output “ this knight”  plus a precise pointing edge (i.e., H3 from Figure 8, for cost 2 points). If 

pointing were more expensive (because even for very imprecise pointing the distance would be 

substantial), the algorithm would output “ the black knight to the right of a white pawn” (i.e., H2 

from Figure 8, for cost 3 points).  

<<Insert Figure 8>> 

Experiment I 

Overview 

To what extent does the output of this algorithm resemble the expressions produced by 

human speakers? Evaluating content determination algorithms for natural language generation 

systems is known to be difficult. Corpora are often used for the evaluation of other natural 

language processing applications, but are not straightforwardly applicable to the evaluation of 

content determination algorithms, since typically the underlying semantic representations are not 

accessible (e.g. van Deemter et al., 2006). The descriptions extracted from corpora provide no 

information about the objects described, nor about their context. In this paper, production 

experiments are proposed for the evaluation of multimodal NLG algorithms. In such 

experiments, participants are offered various targets to which they have to refer. In this way, 

spontaneous data is gathered (i.e. participants are not told what to say), while controlling the 
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input representations at the same time (i.e. the target, its distractors and their respective 

properties are known). It can then be determined to what extent the verbalized output of the 

algorithm coincides with the utterances of the participants in the dimension under investigation.  

Such data is essential for data-driven development and testing of multimodal interpretation and 

generation modules (e.g. Kranstedt et al., 2006; Piwek & Beun, 2001).  

Experiment I addresses one of the crucial ingredients of the algorithm: the claim that the 

linguistic part of a multimodal RE co-varies with the kind of pointing gesture. Given that the 

algorithm predicts that precise pointing rules out all distractors whereas an imprecise pointing 

gesture does not uniquely distinguish the target, this experiment was designed to test the 

hypothesis that when the distance to the target is small (i.e. pointing is precise) the linguistic 

description that accompanies the pointing gesture is relatively simple (i.e. at most includes a 

head noun). In contrast, when the distance to the target is relatively large (i.e. imprecise pointing) 

it is expected that participants combine their pointing gesture with an extensive linguistic 

expression to indicate the target. Although it seems likely that imprecise pointing requires more 

linguistic material to single out the target object, it is not known what kind of material is used. 

The experimental data will be used to provide more insight in this issue. Moreover, it might be 

that the complexity of the target object plays a role in the kind of linguistic descriptions that are 

combined with the various pointing gestures, where we expect that referring expressions for 

complex targets to contain more properties and relations than descriptions of simple targets. 

Participants 

Twenty native speakers of Dutch participated in the experiment, all students and 

colleagues from Tilburg University. None was familiar with the multimodal generation algorithm 

being tested. For each condition five men and five women participated. 
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Experimental setting 

Participants had to perform an object identification task, in which they were first shown 

an isolated object which they subsequently had to single out among a set of comparable objects. 

Two sorts of target objects (geometrical figures and photos of persons) were used to determine 

whether the kind of target influenced the results. Half of the participants performed the tasks in 

the near condition, at a close distance (i.e. they could touch the target object directly and thus 

point precisely), the other half of the participants performed the same tasks in the far condition, 

from a distance of about 2.5m from the screen, from which they could only indicate the rough 

location of the target via imprecise pointing.  Participants were led to believe they were testing a 

new computer system which could be operated by the combined usage of speech and gesture. 

They were told the system was in its testing phase; their input was required for calibration 

purposes. To evoke pointing gestures, the participants were given a pen-like digital stick, a pen 

mouse of approximately 10 centimeters, which could be used as a pointing device. They were 

told that the digital stick emitted a signal which the computer could detect and interpret. In 

addition, participants were equipped with a headset including a microphone through which they 

could speak to the computer. Their task was to identify the target objects via speech and gesture. 

Each target was first displayed in isolation on a 17inch screen, after which the target was 

presented among a set of distractors from which the participant had to single it out. To avoid 

influencing the participants in their realizations, no feedback was given by the experimenter or 

the computer.  

Stimuli 

Two kinds of target objects were used in the experiment: (1) 15 two-dimensional 

geometrical objects; and (2) 15 black and white photographs of persons (all famous 
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mathematicians). To facilitate pointing, the objects were presented on the screen in two isolated 

groups of 2 or 3 objects, one containing the target, the target group, while the other group solely 

consisted of distractors, the distractor group. The position of the target group on the screen was 

systematically varied, as was the position of the target object within the target group. Figures 9 

and 10 illustrate the stimuli for objects and persons respectively. The geometrical figures vary in 

shape (square, circle, triangle) and color (red, blue, green). The persons display a greater variety: 

some are male, some female, they may wear hats, glasses, moustaches and/or beards (only the 

men), and they may have long, short, grey or no hair. A representative subset of 30 target objects 

was selected and presented to participants in a random order. For the identification task, the 

target object was presented on a computer screen together with a number of other objects from 

the same domain.  

Data processing and statistical analysis 

The participants were filmed during the experiment. The resulting data consist of (20 

participants *  30 stimuli) = 600 multimodal REs. All utterances were transcribed. The kind of 

pointing gesture was classified, and the kinds of linguistic properties were determined and 

counted. All participants produced a correct, i.e. distinguishing, description for each target 

object. The descriptions were analyzed with respect to the following features: 

� Number of words Per target description, the number of words used is counted. 

� Number of disfluencies Per target description, the number of repairs, repetitions, 

pauses and filled pauses is counted. 

� Occurrences of type In Dutch, type properties are mostly head nouns that describe 

the target. In a block domain these head nouns typically express the shape of an 
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object (e.g. “ triangle” , “square” , “ball” ). This feature counts the number of type 

properties used to describe the target. 

� Occurrences of properties Per target description, the number of verbalized target 

properties (with the exception of type) are counted (e.g. “round” , “green”). 

� Number of locative relations Per target description, the number of locative 

relations is counted (e.g. “on the left side” ). 

For each of the features an analysis of variance (ANOVA) with repeated measures was 

performed, with distance (levels: near, far) as between-subject variable and target (levels: 

objects, persons) as within-subject variable.  

Results 

We first checked whether the participants produced the intended pointing gestures. 

Indeed, all participants always used a pointing gesture. In the near condition, this pointing 

gesture was always a precise one, where the target object was directly touched with the pointing 

device. In the far condition, all participants produced imprecise pointing gestures, which 

basically denote in which of the two groups of objects on the screen the target object was 

located. This indicates that the operation of (im)precise pointing worked as planned, and the 

hypothesis can be tested that the kind of pointing gesture co-varies with the linguistic RE. No 

gender differences were found, so combined results for male and female participants are 

presented.  

As a first approximation of speaker effort, the number of words is considered together 

with the number of disfluencies in the multimodal REs as a function of the distance and the 

target. The results are presented in Table 1. For both the number of words and the disfluencies 

there is a significant effect of distance (F (1,18) = 45.45, p < .01) and (F (1,18) = 9.24, p < .01), 
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respectively, which indicates that in the far condition participants use more words and less fluent 

speech than in the near condition. For the number of words there is also a significant effect of 

target (F (1,18) = 53.99, p < .01); this implies that participants require more words to refer to the 

persons than to the objects. In addition, there is an interaction between distance and target for 

both variables (words = F (1,18) = 49.09, p < .01 and disfluencies = F (1,18) = 3.48, p < .08). 

This can be explained by observing that the effect of distance is stronger for persons than for 

objects in the far condition but not in the near condition. 

<<Insert Table 1>> 

So, it appears that the linguistic material and the kind of pointing gesture used by 

speakers are co-related. Although some differences among the participants were observed, 

especially in the near condition, each of the participants displayed consistent behavior 

throughout the experiment. In the near condition, a precise pointing gesture suffices to single out 

the target object. Half of the participants in this condition only used a precise pointing gesture, 

three participants typically accompanied the gesture with a demonstrative determiner, “deze” 

(this one), the remaining two participants tended to include some more words in their multimodal 

REs. In the far condition, all participants used imprecise pointing gestures, and hence were 

required to use additional linguistic material to produce unambiguous REs. 

Table 2 presents a more detailed analysis of the linguistic material, making a distinction 

between type information (whether the target is a square, a circle, person, etc., i.e., the 

information given in the head noun), the number of prenominal properties (prop) e.g., color, hair  

style, hair color, etc. and the number of locative relations (loc) e.g., left, below, etc. Looking at 

the presence of the property type, a significant effect of distance is found (F (1,18) = 144.6, p < 

.01); no effect of target and no interaction either (in both cases F (1,18) < 1). That is, when 
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participants use a precise pointing gesture in this experiment they do not use type information, 

but when they use an imprecise pointing gesture, they do include type information (sometimes 

even twice, explaining the 1.01 for persons). For adjectival properties, both a significant effect of 

distance is found (F (1,18) = 70.01, p < .01), and a significant effect of target (F (1,18) = 10.31, 

p < .01). No interaction is found. In terms of the figures in Table 2: when participants use a 

precise pointing gesture, they do not use adjectival properties, and when they use an imprecise 

pointing gesture they do. In addition, when participants describe an object they are somewhat 

more likely to use a prenominal adjective than when describing a person. For locations, finally, a 

significant effect of distance is found (F (1,18) = 2.02, p < .05), and a significant effect of target 

(F (1,18) = 20.47, p < .01). There is also an interaction between target and distance (F (1,18) = 

16.62, p < .01). Inspection of the table reveals that these effects can be explained by the fact that 

location information is rare when a precise pointing gesture is used, but relatively common when 

describing a person in combination with an imprecise pointing gesture. 

<<Insert Table 2>> 

Summary 

The experimental results indicate that speakers indeed vary the linguistic part of a 

multimodal RE in relation to the distance from the target object; the amount of linguistic material 

co-varies with the kind of pointing gesture. In the near condition, eight out of ten speakers 

always produced multimodal REs containing a demonstrative determiner, “deze”  (this), or no 

spoken material at all. The remaining two consistently added a head noun, e.g. “deze driehoek”  

(this triangle). When, on the other hand, an imprecise pointing gesture is used, because of the 

distance to the target, the REs contain much more spoken material. The kind of target also had an 

influence on this. In general, fewer words are required to single out a geometrical figure than to 
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identify a person, in the current experiment. Closer inspection of the data reveals that both 

objects and persons are described in terms of their type (e.g. “ triangle” and “man” respectively). 

In addition, geometrical objects are more often accompanied by prenominal adjectives (e.g., 

“blue”), while person descriptions tend to include locative relations (e.g. “at the top left” ). This is 

probably due to the fact that describing persons is inherently more difficult than colored 

geometrical objects, since the number of potentially relevant attributes is much larger for persons 

than for geometrical objects.  

One disadvantage of Experiment I is that participants were forced to point, so there is 

some risk that the produced multimodal referring expressions are not entirely representative of 

human multimodal references (but see Kühnlein & Stegmann 2003 for comparable results 

obtained in a study where the use of pointing gestures was not compulsory). In addition, the size 

of the target objects was kept constant, and participants were interacting with a computer instead 

of with another human being. 

Experiment II 

           Overview 

Experiment II has a similar set-up as Experiment I:  participants again had to perform an 

identification task, but this time they were prompted by the experimenter to locate countries on a 

world map. Arguably, this is an inherently more spatial task but speakers were not forced to 

point. For this experiment, we made a distinction between targets that were ‘easy’  to point to 

(countries that are large or are isolated) and targets that were ‘difficult’  to point to (small and 

surrounded by distractors). We hypothesized that speakers would point more often to the ‘easy’  

targets. Especially when referring to ‘difficult' targets, ‘easy’  relata could be helpful in 

identifying the target.  
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Participants 

Twenty native speakers of Dutch participated in the second experiment (none was a 

participant in Experiment I). None was familiar with the multimodal generation algorithm. Ten 

participants were male and ten female, evenly distributed over the conditions. 

Experimental setting 

Participants were told that their topographical knowledge was going to be tested. Half of 

the participants performed the experiment in the near condition (they could directly touch the 

map), and half in the far condition (about 2.5 meters from the map). Participants in the far 

condition could only point imprecisely to a subarea of the map. All participants had to locate 30 

countries, presented to them in a random order. Participants were given a stick of 40 cm which 

they could use for pointing if they so desired, but they were not explicitly instructed to point. 

Figure 11 shows two representative stills from the two experimental conditions. 

Stimuli 

30 countries were selected, which were assumed to be easy to locate on a world map for 

our participants. Of the selected countries, 15 were large (easily identifiable, e.g. Australia, 

Brazil, Canada) and 15 were small (difficult to identify, e.g. Belgium, Portugal, Surinam). 

Data processing and statistical analyses 

The participants were filmed during the experiment. The resulting corpus consist of (20 

participants *  30 stimuli) = 600 multimodal REs. A typical example of a description of an easy 

object like Brazil is “dat grote groene vlak daar”  (that large green area over there) together with 

an imprecise pointing gesture. A somewhat extreme example of reference to a difficult object 

(Portugal) is “het eh groene land dat ten zuid westen of dat eh in Zuid Europa ligt naast het roze 

Spanje”  (the uh green country which lies in the south west or which uh lies in Southern Europe 
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next to the pinkish Spain) together with an imprecise pointing gesture. All utterances were 

orthographically transcribed. All participants produced a correct, i.e. distinguishing, description 

for each target object. The descriptions were analyzed using the same features as described for 

Study I (i.e., Number of words, number of disfluencies, occurrences of type, properties and 

locative relations). Two additional linguistic features were analyzed: 

� Occurrences of name Per target description the times the name of the target is 

mentioned is counted. For instance “Brazil”  in the example above. 

� Number of relata Per target description, the number of relata used is counted. For 

instance, “Europa”  and “Spanje”  in the description of Portugal above. The 

descriptions that identify the relata are dealt with separately. 

In addition the number of pointing gestures directed to the target and directed to relata were 

counted. For each of the features an analysis of variance (ANOVA) with repeated measures is 

performed, with distance (levels: near, far) as between-subject variable and target (levels: easy, 

difficult) as within-subject variable.  

Results 

We first checked when and where participants used pointing gestures, and it turned out that, 

without being explicitly instructed to do so, all participants always used a pointing gesture. In the 

near condition, this pointing gesture was always a precise one, where the target was directly 

touched. In the far condition participants could only use imprecise pointing gestures, which 

basically denote in what area on the map the target is located. This indicates that the variation in 

distance worked as intended. In Table 3 an analysis of the occurrences of is presented. The total 

number of pointing gestures (total pointing) is split into pointing to the target (to target) and 

pointing to relata. Table 3 shows that all participants pointed at every target at least once, no 
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matter the distance or size. When we consider the number of total pointing gestures in more 

detail, it appears that participants in the far condition direct considerably more pointing gestures 

to relata in describing difficult objects than in describing easy objects. More specifically, the 

total number of pointing gestures displays both an effect of distance (F (1,18) = 24.52, p < .01) 

and an effect of target (F (1,18) = 13.45, p < .01). Moreover the interaction between target and 

distance (F (1,18) = 11.62, p < .01) indicates that participants in the far condition use more 

pointing gestures in references to difficult objects.  

<<Insert Table 3>> 

  Table 4 gives number of words and the number of disfluencies in the multimodal 

referring expressions for the various conditions. For the number of words there is an effect of 

distance (F (1,18) = 241.04, p < .01), and an effect of target (F (1,18) = 33.12, p < .01). These 

effects indicate that in the far condition participants use more words than in the near condition 

and participants require more words to refer to difficult objects than to easy ones. In addition, 

there is an interaction between distance and target (F (1,18) = 23.93, p < .01 ). This can be 

explained by observing that the effect of target is stronger in the far condition than in the near 

condition. The number of disfluencies show an effect of distance (F (1,18) = 100.44, p < .01) and 

an effect of target (F (1,18) = 6.44, p < .05), which indicate that participants speak less fluently 

in the far condition when referring to difficult objects. Furthermore there is an interaction 

between distance and target (F (1,18) = 7.17, p < .05 ) which signals a stronger effect of target in 

the far condition compared to the near condition. In the near condition participants do not use 

many words to refer to objects easy or difficult, consequently disfluencies are scarce. 

<<Insert Table 4>> 
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Table 5 offers a more detailed analysis of the linguistic material, making a distinction 

between name (e.g., “Portugal” ), type (e.g., head nouns like “country” , “area” , “part”  etc.), the 

number of prenominal properties (e.g., color, size, shape, etc.) and the number of location 

markers (location). Location markers can be split into at least two types: (1) “ in the south” , as a 

general reference to the southern part of the world, and (2) “next to the pinkish Spain”  including 

a relatum. In the latter case “next to the pinkish Spain”  as a whole is treated as a location marker. 

In addition we counted the number of relata used per description. For a detailed analysis of the 

descriptions of the relata we refer to Van der Sluis (2005).  

<<Insert Table 5>> 

The results show that for almost all features there is a significant effect of distance (name, 

F (1,18) = 41.21, p < .01; type, F (1,18) = 132.21, p < .01; property, F (1,18) = 554.75, p < .01; 

location, F (1,18) = 76.57, p < .01; relata, F (1,18) = 119.787, p <.01). Thus, in the far condition, 

speakers use more names, more type, property and location information and more relata to 

identify a target object. The results also show that participants tend to use more type and 

property information when referring to easy targets (type, F (1,18) = 5.96, p < .05 and property, 

F(1,18) = 5.94, p < .05), whereas in descriptions for difficult targets participants use more 

names, locations and relata (name, F (1,18) = 5.03, p < .05; location, F (1,18) = 27.72, p < .01; 

relata, F(1,18) = 51.157, p < .01). When we compare the references for easy objects with those 

of difficult objects, it can be noted that the differences are almost non-existent in the near 

condition, while they are substantial in the far condition (name, F (1,18) = 4.91, p < .05; type, F 

(1,18) = 6.99, p < .05; property, F (1,18) = 9.53, p < .05; location, F (1,18) = 27.24, p < .01; 

relata, F (1,18) = 41.149, p < .01). Interestingly, in the far condition, easy objects are more often 
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referred to using head nouns and properties, while descriptions of difficult objects tend to contain 

more locative expressions and relata.  

Summary 

The results of this second experiment support the findings of the first one. Contrary to 

expectation, in the second study speakers always include pointing gestures in their descriptions 

regardless of the difficulty of the target and the distance to the target. This could be a result of 

the fact that the participants were equipped with a stick with which they could point, or simply 

because the nature of the task provokes pointing gestures. When the target is close, speakers tend 

to point only once in the direction of the target. Speakers use more pointing gestures to refer to 

small targets than to large targets. A closer inspection of the data shows that the extra pointing 

gestures are directed towards relata and not the target. Furthermore, speakers co-vary the 

linguistic part of a multimodal RE with the distance to the target and the kind of target. When the 

target is close, speakers reduce the linguistic material to almost zero (i.e. often indicating the 

target with a demonstrative determiner only), whereas participants tend to produce overspecified 

descriptions if the target is located further away. This can be due to the inherent uncertainty of 

imprecise pointing. Speakers may not be sure whether the imprecise pointing gesture is 

sufficiently clear and so, to guarantee that their reference is distinguishing, they include 

additional information. In human communication speakers typically produce REs that contain 

more information than strictly necessary to identify the target (e.g. Pechmann, 1989). Addressees 

appreciate this redundancy, because it facilitates comprehension of the speaker’s message (cf. 

Engelhardt et al., 2006; Van der Sluis en Krahmer, 2005; Arts, 2004).  
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Discussion and Future work 

This paper has described a new computational model for the generation of multimodal 

REs. The approach is based on only a few, independently motivated, assumptions. A Flashlight 

Model for pointing was proposed, allowing for different gradations of pointing precision, ranging 

from precise and unambiguous to imprecise and ambiguous. The algorithm used to generate the 

multimodal REs according to this model is a graph-based algorithm which tries to find the 

cheapest RE for a particular target object (Krahmer et al., 2003). In the search for the cheapest 

solution, it is assumed that linguistic properties have certain costs (cf. the preferred attributes 

from Dale & Reiter, 1995), whereas the costs of the various pointing gestures are derived from 

an empirically motivated adaptation of Fitts’  law (Fitts, 1954). The costs should not be 

interpreted in an absolute sense, but relative to each other. In general, we assume that the relative 

weight of linguistic properties and deictic gestures is speaker-dependent (some speakers point 

more easily, and more frequently, than others). 

The model has a number of nice consequences, such as (1) There is no a priori criterion 

needed to decide when to include a pointing gesture. Rather the decision to point is based on a 

trade-off between the costs of pointing and the costs of linguistic property; (2) The amount of 

linguistic properties required to generate a distinguishing multimodal RE is predicted to co-vary 

with the kind of pointing gesture; (3) An isolated object does not require precise pointing; there 

is always a graph containing a less precise and hence cheaper pointing edge which has the same 

objects in its scope as the more precise pointing gesture; and (4) A precise pointing edge and a 

relational edge never occur together in a distinguishing graph, because a graph that contains a 

precise pointing gesture is distinguishing. 
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To implement the Flashlight Model for pointing, the graph-based algorithm presents a 

very suitable framework. In contrast, an incremental strategy to the generation of multimodal 

descriptions is not straightforward. Such an incremental approach to generate multimodal REs 

was presented by Van der Sluis & Krahmer (2001) as a multimodal variant of the Incremental 

Algorithm (Dale & Reiter, 1995). There pointing gestures were generated only if a purely 

linguistic expression would be too complex, (i.e. the number of linguistic properties exceeds a 

certain threshold). In these cases, the generated linguistic RE was simply discarded and a precise 

pointing gesture was generated together with a simple RE which contained no more than a head 

noun. Naturally, this approach (first generating a linguistic description, and then possible 

discarding it for a gesture) is hardly incremental in the sense of Dale and Reiter. Another way of 

extending the Incremental Algorithm with the generation of pointing gestures would be to enrich 

the list of preferred attributes with the gestures VIP, IP and P (in that order of preference, 

modeling the increase in cost). In this approach, first a number of linguistic edges are selected 

followed by one or more pointing edges. However, the lack of backtracking of the incremental 

Algorithm entails that all selected properties would be realized, which implies that: (1) Multiple 

gestures might be generated; and (2) If P is generated it comes with more properties than 

necessary. This seems to suggest that the Flashlight Model is inherently non-incremental.  

The graph-based algorithm presented in this paper does not use an a priori criterion to 

decide when to use a pointing gesture. The output modality is determined by a trade-off between 

the costs of pointing and the costs of a linguistic description, which have to be defined on an 

empirical basis.6 Two assumptions underlie the algorithm: (1) the amount of linguistic 

information necessary to identify a target co-varies with the precision of the pointing gesture 

included; and (2) the linguistic information and pointing gesture depend on the kind and the size 
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of the target. Two production experiments were presented to evaluate the output of the graph-

based algorithm. Experiment I was conducted in a very strict setting where the distance to the 

domain and the target objects were varied. Experiment II was conducted in a more natural 

setting, where both the distance to the objects and the size of the target objects were varied. 

Overall, it may be concluded that the co-variation of the linguistic material and the 

precision of pointing gesture as predicted by the algorithm corresponds well with the results of 

the experiments. The multimodal algorithm agrees with the majority of speakers concerning the 

fact that the more precise the pointing gesture, the less linguistic material is generated to refer to 

an object. The resulting data also confirm the second assumption that underlies the algorithm; the 

linguistic part of the RE varies with the size and the kind of target. In cases where the target is 

difficult to describe because it is small or because it has a lot of features, speakers generally 

choose to use locative relations for identification. In contrast, when the target is easy to describe, 

because it is large or has features which are easy to distinguish, speakers use the intrinsic 

properties of the target for identification. 

Although the algorithm performs fine when it comes to the above assumptions, there are 

some differences between the REs produced by human speakers and the ones generated by the 

algorithm. The most obvious one is that in the far (but not in the near) condition, humans tend to 

overspecify their references, while the algorithm always produces minimal REs. It is worth 

stressing though, that different search strategies are compatible with the graph-based perspective. 

Krahmer et al. (2003) illustrate this by describing a different search strategy which mimics the 

Incremental Algorithm and thus gives rise to a certain amount of redundancy. However, it can be 

argued that this kind of overspecification differs from human overspecification, in that it depends 
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on the interplay between the objects in the distractor set and the preference order of the attributes 

(see also Jordan, 2002 and Krahmer and Theune 2002).  

One of the reasons why participants in the two experiments overspecify their references 

in the far condition may be that they are uncertain whether their REs clearly indicate the target 

and therefore choose to include potentially redundant information. Arguably, the addition of 

redundant properties and gestures increases the certainty of the speaker about the likelihood of a 

correct interpretation on the side of the addressee. As such the degree of overspecification seems 

tied to a notion of certainty; a speaker produces an overspecified RE to increase the probability 

that the addressee is able to interpret it correctly. An outline for such an approach in the context 

of multimodal references can be found in Van der Sluis (2005).  
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Appendix: Graph Definitions 

 

Labeled directed graph: Let Labels = Prop  �  Rel be the set of labels with Prop and Rel 

disjoint, then G = < VG, EG >  is a labeled directed graph, where VG �  D is the set of vertices and 

EG �  VG × Labels × VG  is the set of labeled directed edges.7  

 

Subgraph isomorphism: H = < VH, EH> can be placed over G = <VG, EG > iff there exists a 

subgraph G’  of G such that H is isomorphic to G’ . H is isomorphic to G’  iff there exists a 

bijection �  : VH  VG’, such that for all vertices v, w � VH and all l � Labels:  

  (v, l, w) �EH  (� .v, l, � . w) � EG’ 

Given a graph H and a vertex v in H, and a graph G and a vertex w in G, it can be defined that 

the pair (v, H) refers to the pair (w, G) iff (1) H is a connected graph, i.e., each vertex has at 

least one edge that links it to another vertex; and (2) H is mapped to a subgraph of G by an 

isomorphism �  and � .v = w. A vertex-graph (v, H) uniquely refers to (w, G) (i.e., (v, H) is 

distinguishing) iff (v, H) refers to (w, G) and there is no vertex w’  in G different from w such 

that (v, H) refers to (w’ , G). 
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Graph union: The union of graphs H = < VH, EH > and G = < VG, EG > is the graph H �  G = < 

VH �  VG, EH �EG >.  

 

Graph extension: If G = < V, E > is a graph and e = (v, l, w) is an edge between vertices v and w 

and with label l  � Labels, then the extension of G with e (notated G + e) is the graph < V �  { v, 

w} , E �  e >. 

 

Gesture graph: Let Gestv = { Pv, IPv, VIPv}  be the set of deictic pointing gestures to a target 

object v. Then, given a domain graph G = <VG, EG>, a gesture graph Fv = <VG, EF> is a labeled 

directed graph, where VG is the set of vertices from the domain graph and EF = VG × Gestv × VG  

the set of pointing edges. The subscript v in the gesture graph Fv indicates the target of the 

pointing gesture. 

 

Multimodal graph: Let Labels = Prop �  Rel �  Gestv with Prop, Rel and Gestv disjoint. So M 

= <VM, EM > is a labeled directed graph where VM �  D is the set of vertices and EM �  VM × 

Labels × VM  is the set of labeled directed edges.  

 

Computing costs: Cost(H) = � � HVv Cost(v) + � � HEe Cost(e) 

 

Monotonicity of cost functions:�H �  G � e � EG : Cost(H) �  Cost (H + e)  
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Footnotes 

1 These algorithms all operate on domains which are in the direct visual field of both 

speaker and addressee. Throughout this paper this assumption is made as well. 

2 For the sake of simplicity the examples used to illustrate this algorithm are restricted to a 2D 

domain with only a limited number of objects. This is not an inherent limitation of the algorithm. 

3 For a principled derivation of graphs from domain models, (see Croitoru & van Deemter 2007). 

4 A somewhat more involved realization module might realize this graph as “ the black knight 

between the two white pawns”  

5 For the sake of simplicity the costs of the properties are chosen in such a way that easy 

calculations can be made, but nothing hinges on this. 

6 Standard techniques from data driven computational linguistics can be applied to find the best 

settings of the cost function. The usual strategy is to collect a large corpus and divide it in a 

training and a test part. The algorithm can be applied with a number of different settings to the 

training corpus and the best setting (e.g. the setting with the largest number of correct 

predictions) is then applied to the test set. 

7 Subscripts are omitted where this can be done without creating confusion. 
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Table 1 

The average number of words and disfluencies per description and the overall means in 

Experiment I as a function of distance and target. Standard deviations between brackets. 

   Distance 

   Near Far 

Object Words .78 (1.21) 2.93(.87) 

 Disfluencies .00(.00) .16(.35) 

Person Words .84(1.31) 5.45(1.32) 

 

Target 

 Disfluencies .01(.02) .34(.25) 

 Words .81(1.22) 4.19(1.69) 

 

Overall 

Disfluencies .00(,02) .25(.31) 
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Table 2 

The average number of attributes type, property and location given per description and the 

overall means in Experiment I as a function of distance and target. Standard deviations between 

brackets. 

   Distance 

   Near Far 

Object Type .15(.32) 1.00(.00) 

 Property .19(.34) .94(.13) 

 Location .09(.27) .30(.43) 

Person Type .11(.17) 1.01(.04) 

 Property .03(.11) .76(.26) 

 

 

Target 

 Location .12(.33) .81(.45) 

 Type .12(.25) 1.00(0.3) 

 Property .11(.25) .85(.22) 

 

Overall  

 

Location .11(.27) .56(.50) 
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Table 3 

The average number of pointing gestures given per description and the overall means in 

Experiment II as a function of distance and target. The total number of pointing gestures is 

divided in pointing gestures directed to target and to relata.  Standard deviations between 

brackets. 

   Distance 

   Near Far 

Easy Total 1.00(.00) 1.32(.22) 

 To target 1.00(.00) 1.13(.14) 

 To relata .00(.00) .20(.17) 

Difficult Total 1.02(.04) 1.87(.59) 

 To target 1.02(.05) 1.03(.21) 

 

 

Target 

 To relata .00(.00) .85(.64) 

 Overall Total 1.03(.15) 1.06 (.12) 

  To Target 1.01(.29) 1.08(.29) 

  To Relata .00(.00) .05(.84) 



Generating Multimodal References 45 

Table 4 

The average number of words and disfluencies per description and the overall means in 

Experiment II as a function of distance and target. Standard deviations between brackets. 

   Distance 

   Near Far 

Easy Words 2.28 (1.09) 15.59(3.10) 

 Disfluencies .19(.10) 1.57(.85) 

Difficult Words 3.23(1.63) 27.25(6.28) 

 

Target 

 Disfluencies .17(.11) 2.40(.65) 

 Overall Words 2.76(1.44) 21.42(7.68) 

  Disfluencies .18(.11) 1.98(.85) 
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Table 5 

The average number of attributes name, type, property, location and relata given per description 

and the overall means in Experiment II as a function of distance and target. Standard deviations 

between brackets. 

   Distance 

   Near Far 

Easy Name .32(.26) .84(.24) 

 Type .03(.05) .92(.29) 

 Property .04(.06) 1.51(.20) 

 Location .12(.13) .18(.68) 

 Relata .05(.08) 1.11(.46) 

Difficult Name .33(.28) 1.07(.18) 

 Type .04(.07) .76(.16) 

 Property .07(.08) 1.30(.21) 

 

 

Target 

 Location .13(.18) 2.87(.98) 

  Relata .11(.15) 2.20(.56) 

 Overall Name .32 (.27) .96 (.24) 

  Type .04(.06) .84(.24) 

  Property .05(.67) 1.40(.23) 

  Location .12(.15) 2.32(1.00) 

  Relata .08(.12) 1.65(.75) 
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 Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 

GenerateReferringExpression(v, G) 
Construct(v, Fv, G) 
M : = Fv  �  G 
BestGraph : = �  
H := <{v},	 > 
BestGraph : = FindGraph(v, BestGraph, H, M ) 

 Return  BestGraph 
FindGraph(v, BestGraph, H, M) 

if BestGraph 
�

 �  and Cost(BestGraph)  Cost(H) then 
return BestGraph 

end if 
C : = {n | n � VM 
  MatchGraphs( v, H, n, M )}  
if  C = { v}  then 
 Return H 
end if 
for each adjacent edge e  do 
 I : = FindGraph(v, BestGraph, H + e, M) 
 if BestGraph = �  or Cost( I )   Cost(BestGraph) then 
  BestGraph : = I 

end if 
end for each 
return BestGraph 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 
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Figure Captions 

Figure 1.  A chess configuration. 

Figure 2. An example domain. 

Figure 3. Our example domain represented as a domain graph. 

Figure 4. Three potential referring graphs for d4 in the example domain. 

Figure 5. Pointing into the example domain. 

Figure 6. Deictic gesture graph. 

Figure 7. Pseudocode of the algorithm’s main function generateReferringExpression and the 

subgraph construction function findGraph. 

Figure 8. Referring graphs for d4 in the example domain. 

Figure 9. A stimulus example from the domain of geometrical object. On the left, the target  

object displayed in isolation. On the right the target is presented with a number of similar 

objects. 

Figure 10. A stimulus example from the domain of photographed persons. On the left, the target  

object (a picture of a mathematician) is displayed in isolation. On the right the target is  

presented together with a number of similar objects. 

Figure 11. Example of participants in Experiment II in the near (left) and in the far (right) 

condition. 

 


