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Abstract. We present a new approach to the generation of referring ex-
pressions containing attributive, type and relational properties combined
by conjunctions, disjunctions and negations. The focus of this paper is on
generating referring expressions involving positive and negated relations.
We describe rule-based overgeneration of referring expressions based on
the notion of ‘extension’, and show how to constrain the search space
by interleaving logical form generation with realization and expressing
preferences by means of costs. Our chart-based framework allows us to
develop a search-based solution to the problem of ‘recursive’ relations.

1 Introduction

The task of generating referring expressions (GRE) can be characterized by
the following question: given a domain model and a set of referents, how can we
uniquely identify the referent(s) using natural language? This task has often been
combined with the requirement to be minimal, i.e. to use only a minimal number
of properties, and with considerations of computational complexity. Earlier work
often centered around the ‘incremental algorithm’ [3] which originally dealt with
selecting attributive properties but which can also be taken as a processing
framework for selecting relations [2] and Boolean combinations of attributes for
reference to sets [I3]. A separate strand of recent work originates from the graph-
based approach to GRE which provides an elegant treatment of relations [9] and
which has also been extended to deal with Boolean combinations [14]. These
approaches see GRE as a task separated from surface realization.

Previously, overgeneration has mostly been explored in the context of sur-
face realization [TOJTIT5]. In this work, we apply it to the generation of referring
expressions including both logical form construction (or ‘description building’,
as we call it) and realization. First, we make sure that we can actually handle
all the types of properties (attributes, relations, types) and their combinations
(conjunction, disjunction, negation) we want to cover, and only then do we start
weeding out unwanted solutions and address efficiency issues. Thus, at first we
overgenerate vastly, giving priority to completeness of coverage over efficiency
and correctness of all outputs. The advantage of this methodology is a separation
of concerns: we can first concentrate on giving a consistent treatment to a wide

A. Belz et al. (Eds.): INLG 2004, LNAI 3123, pp. 171-[I81] 2004.
© Springer-Verlag Berlin Heidelberg 2004



172 Sebastian Varges

range of phenomena without worrying about efficiency and algorithmic com-
plexity. After that we can concentrate on defining constraints and preferences,
and search for ‘good’ solutions. At the implementation level, some of these con-
straints are applied in the rule-based part, some are implemented as filters on
the output of the rule system.

In the next section, we introduce the general processing framework and the
three levels of representation of our approach: domain representation, description
building and realization. In section [3, we examine the output of a first version
of the system and introduce a constraint designed to prevent the inclusion of
‘redundant’ information. In section [31] we address the issue of search for opti-
mal referring expressions, followed by a discussion of the problem of ‘recursive’
relations. In section Bl we compare our work to previous work on GRE and in
section Bl we discuss possible extensions of our approach.

2 Processing Framework and Representations

Overgeneration requires a flexible processing framework that allows one to pro-
duce a large number of candidate outputs and experiment with different search
strategies. Chart-based algorithms offer just this: different agenda orderings can
be used to model different search strategies, and intermediate results can be
reused in order to avoid unnecessary recomputations. Chart generation algo-
rithms [8] have often been applied to surface realization. We apply them to
description building as well: starting from a domain specification, we first derive
basic description edges, and then recombine these bottom-up using logical con-
nectives. Employing overgeneration at the level of description building can lead
to the generation of vast numbers of descriptions that cannot be realized. As
a consequence, we closely couple description building with surface realization.
Such a coupling has previously been advocated in [12]. In the context of our
approach, this means that the chart algorithm attempts to immediately realize
new description edges. Only descriptions that have been successfully realized
can be used in further rule applications. Surface realizations of partial referring
expressions are always combined compositionally (see section 23]).

2.1 Domain Representation

Domain objects are defined by means of three types of properties: attributes,
types and relations. A domain D contains a set of domain objects {01, 02, ..., 0, }.
As in [3], every domain object is required to have exactly one type ¢ (e.g. t(01) =
cup) and has zero or more attributes and relations. Types can be arranged
in a subsumption hierarchy, e.g. artifact > cup. Attributes are defined by
attribute value pairs where both attributes and values are atomic (e.g. attr(o1) =
colour:red). Similar to the graph representation language of [9], relations are
directed arcs between domain objects (e.g. rel(o1,02) = in). In the following,
we illustrate our approach with an example domain similar to the one in [2]. Tt
contains three cups (c1,c2,¢3), three bowls (b1,b2,b3), a table (¢1) and a floor (f1).
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Fig. 1. Example domain

Cups c¢1 and co are ‘in’ by and bs, respectively. b1, bs and cs are ‘on’ the floor but
by is ‘on’ the table which in turn is ‘on’ the floor. ¢y and ¢ are red, c3 is blue and
all other objects are black. All these objects are subtypes of artifact which in
turn is a subtype of domain object. Figure[l shows the relative positions of the
domain objects in the example domain (colours are not depicted).

2.2 Description Building

We regard constructing descriptions of domain objects as an inference process
working over the domain model. Descriptions are represented as pairs of logical
form and their extension which is defined as the set of domain objects for which
the description is true. Logical forms contain the properties of the domain model,
combined by conjunction, disjunction and negation.

The first step in building up increasingly complex descriptions is to determine
the extension of the explicitly defined domain properties excluding relations,
for example <type(cup),{c1,cz, cs}> or <atir_val(colour : red),{c1, cz2}>. The sub-
sumption hierarchy is used to compute the extension of the supertypes of the
domain objects as well, for example <type(artifact),{c1,ca,cs,bi,ba,bs,t1, f1}>.
This allows us to deal with all types in a uniform way.

The main description building phase takes the basic description edges and
recursively generates new description edges. We employ the following rules:

1. Conjunction: given two description edges d; and ds, generate a new edge d3
whose extension extq, is the intersection extq, A extq,, for example
<(type(artifact) A attr_val(colour : blue)), {cs}>.

2. Disjunction: given two description edges di and do, generate a new edge ds
whose extension extg, is the union extq, Vextqy,, for example <(type(floor)V
type(table)),{f1,t1}>.

3. Negation: given a description edge d;, generate a new edge do whose exten-
sion extq, is the complement exty,, for example
<=attr_val(colour : black),{c1, c2, c3}>.

Relations are introduced in a separate rule. Generally, we see relations as
combining two existing descriptions. For example, the cups can be combined
with the bowls through relation in into the cups in the bowls. Thus, we define
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a rule that takes two description facts and establishes whether a given rela-
tion holds between them. This allows us to introduce both positive and negated
relations in the same rule. Since our descriptions are defined by exactly one
extension, we have to make a decision when building up descriptions involving
relations: do we focus on the domain or range of the relation? (Given our over-
generation approach, we generate relation edges for all cases, but other strategies
are possible.) Relations seem to have similarities to conjunctions in that they
add constraints to the description. In the above example, extending the cups to
the cups in the bowls reduces the size of the focus extension of ‘cups’ from three
to two elements. Introducing negative relations has the same constraining effect:
the focus extension of the cup not in the bowl leaves only one element, c3. We
define the following relation introducing rule:

4. Given two description edges d; and do and a relation name rel:

— let extension extqom, pos contain all o; € exty, that are in domain of rel with
at least one member of exty, in its range.

— let extension extgom neg contain all o;; € exty, that are not in domain of rel
with any member of extq, in its range.

— let extension ext,qn pos contain all o; € exty, that are in range of rel with
at least one member of exty, its domain.

— let extension ext,qn neg contain all o;; € exty, that are not in range of rel
with any member of exty, in its domain.

4.1 generate a new description edge d3 with extension extgom, pos and focus on
domain of rel, for example <in(FOCUS(type(cup)), type(bowl)),{c1,ca}>.

4.2 generate a new description edge ds with extension extiom neg and focus on
domain of rel, for example <—in(FOCUS (type(cup)), type(bowl)), {c3}>.

4.3 generate a new description edge d4 with extension ext,qn pos and focus on
range of rel, for example <in(type(cup), FOCUS (type(bowl))),{b1,b2}>.

4.4 generate a new description edge ds with extension ext,qn neg and focus on
range of rel, for example <—in(type(cup), FOCUS(type(bowl))), {b3}>.

Since relations are represented by directed arcs, relation rule 4 needs to test dy
and ds at both domain and range of a relation. The relation rule introduces posi-
tive relations if the relation holds for at least one pair of domain objects. Negated
relations use the complements of the extension of the positive cases at the re-
spective relation ‘ends’; i.e. eztiom,neg = €Tldom,pos and €Tlran,neg = €Ttran,pos-

Description building using relation rule 4 (and also rules 1-3) is subject to the
constraint that the (focus) extension should not be the empty set. For example,
let us assume a domain consisting of two bowls containing a cup each. We should
be able to generate the cups in the bowls but we should not produce the cup not
in the bowl as there is none. Rule 4 computes an empty focus extension in this
case and we ‘block’ the resulting description. However, if we add another empty
bowl, we can generate the bowl not containing the cup while still excluding the
cup not in the bowl. Requiring description extensions to be non-empty seems
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a reasonable restriction for GRE since in the end we want to refer to at least
one domain object. Due to the availability of a single extension in descriptions
involving relations, the results of the relation rule can be combined further in
rules like all other descriptions.

2.3 Realization

Grammar rules and lexicon map description facts to surface forms. Basic descrip-
tion edges for types and attributes are realized by means of a phrasal lexicon.
Complex descriptions are realized by collecting the realizations of the compo-
nent descriptions and combining them bottom-up. The derivation structure of
descriptions resulting from rules 1-4 is mirrored by the syntactic structure of
the realizations. For example, when we conjoin attribute value edge colour:red
with type edge cup into a new conjunction edge in the description builder, this
is mirrored in the realizer by combining the realizations of the two descriptions,
adjective edge red and Nbar edge cup, into Nbar red cup. Every realized descrip-
tion contains at least one type for the head noun of the top-level NP. In contrast
to the incremental algorithm [3], this is a result of the grammar rules and the
close coupling of description building and realization rather than a hard-wired
constraint.

Relations are realized by combining already realized NPs for domain and
range of the relation with a verb or preposition provided by the lexicon, possibly
introducing a negation, for example the cup + mot + in + the bowl. The same
relation can be realized by different syntactic categories depending on the focus
of the description. For example, relation ‘in’ is realized as verb gerund containing
rather than a preposition if the focus is on the range of the relation.

3 Overgeneration and Search

The currently implemented system uses 34 description building rules (distin-
guishing between negation of different description types, amongst others) and
21 rules for NP generation. The rules are expressed as productions in a produc-
tion system [4], the knowledge base of which serves as the chart. In the following,
we first look at the output of the system using bottom-up breadth-first search
without specific referents in mind. After that we define goal referents and refine
the search strategy.

Figure Bl shows some output NPs generated from the example domain of
section 211 The last column (‘complexity’) measures the number of description
rules involved. Introducing a negated relation increases the complexity by 2.
The first 3 NPs in figure [2 are realizations of basic descriptions. The following
NPs are complex descriptions. 4 is an example of a disjunction. 5 and 6 exhibit
negations which, as 6 shows, can be applied repeatedly. 7 and 8 use adjectives
and 9-15 use relations of increasing complexity.

One problem of the generated NPs involves ‘redundant’ information. This
is most obvious in cases of direct repetitions, for example NP 7. Moreover, in
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| |Realization |Extension |Complexity|
(1) |the cups cl c2c3 1
(2) |the bowls bl b2 b3 1
(3) [the artifacts c2 ¢3 b2 b3 cl bl t1 f1]1
(4) |the table or the cups tlcl c2c3 3
(5) [the non-blue domain objects clc2blb2b3tlfl |4
(6) [not not a cup clc2c3 3
(7) [the black black bowls bl b2 b3 5
(8) [the black non-blue table tl 6
(9) [the bowl on the table b2 3
(10)[the table under the bowl tl 3
(11)|the cups in the bowls cl c2 3
(12)|the bowls containing the cups bl b2 3
(13)|the bowl not containing the cup b3 4
(14)[the cups in the bowls containing the cups infcl c2 9
the bowls containing the cups
(15)|the bowls containing the cups in the bowls [bl b2 9
containing the cups in the bowls

Fig. 2. Some realized NPs of overgeneration experiment

10 the table would have been sufficient to describe the referent. As Dale and
Reiter point out, ‘redundant’ information may violate the Gricean maxim
of quantity, leaving the reader wondering why information such as under the
bowl (NP 10) was included. Since description building is extension-based, it is
quite natural to require description building rules to reduce the extension size.
This only applies to operations that are intersective in nature, i.e. conjunctions
and relations. Concerning relations, additional information should constrain the
focus extension, preventing, for example, NP 10 because under the cup does
not reduce the extension of the table. Conjunctions of descriptions, apparently
symmetric, also seem to have a focus extension when we consider how they are
realized: in the red cups, red should only constrain the number of cups. If we
also require the extension of ‘red’ to be reduced, we cannot generate the red cups
in our example domain because all red objects are cups. This observation again
points to a close coupling of content determination and realization: the syntactic
head corresponds to the focus extension used in the description builder. Applying
the extension-reducing constraint prevents the generation of NPs 7, 8 and 10.

3.1 Filtering and Search for Optimal Referring Expressions

Our bottom-up breadth-first chart algorithm generates referring expressions in
order of increasing complexity. Thus, it can stop as soon as the system has
generated a description for some intended referent(s), knowing that there cannot
be a less complex one. This is essentially the ‘full brevity’ algorithm described by
Dale and Reiter [3]. What, however, if we want to use a different cost metric? For
example, integration with surface realization allows one to define costs based on
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NO CONSTRAINTS EXT. CONSTR. |[EXT. CONSTR. + EQUIL
¢ edges|rea1izations|secs edges|rea1izations|secs edges|realizations| secs
1 33 21 1 33 211 1 33 21 1
2 51 32 2 51 321 1 51 32 2
3| 128 78| 3| 112 67| 3 96 54 3
4|l 272 158| 6| 219 122 6| 155 76 4
5| 887 443| 37| 521 261| 19| 277 128 9
6|| 2042 979| 189|| 1073 504| 64| 372 169 15

Table 1. Performance figures for different levels of NP complexity (‘c’)

the number of words. These alternative metrics can be incorporated by making
costs explicit and ordering the agenda in terms of increasing cost. Under the
assumption of monotonically increasing costs, we know that a current best NP
describing the intended referent(s) is indeed the optimal one according to the
cost metric once all other descriptions on the agenda have a higher cost. This is
similar to the branch-and-bound algorithm used in graph-based GRE [9]. We can
reduce the search space further by defining an admissible heuristic for estimating
the minimal additional cost of the descriptions on the agenda. For example, we
may know that further rule applications will add at least one more word to the
realizations. We then use the increased minimal cost to compare descriptions on
the agenda to the cost of the current best solution. The result is A* search [I1]
for intended referents.

In addition, we can filter descriptions by means of equivalence classes. These
are defined by the extension of the descriptions and the syntactic features of their
realization. For example, an equivalence class for ¢z and syntactic category NP
may contain descriptions realized as the blue cup and the blue artifact, amongst
others. Dropping one of these will not reduce the referential capabilities of the
generator since the alternatives are substitutable. Which one is dropped depends
on the cost metric: for example, if costs reflect the distance from ‘basic level
types’ [B], we can eliminate the blue artifact.

Table [[lshows some performance figures for the example domain for different
levels of NP complexity (‘c’). The number of edges includes both description and
realization edges. Up to a complexity of 5 the simplest version of the implemented
system (‘NO CONSTRAINTS’) generates 443 realizations within 37 seconds. The
constraint that requires extensions to be reduced (‘EXT. CONSTR.’) decreases
the number of realizations to 261 in 19 seconds. Adding filtering based on equiv-
alence classes (‘EXT. CONSTR. + EQUI.’) leads to a further reduction to 128
realizations in 9 seconds. The system generates the table or the floor for goal
referents ¢; and f1 in 2 seconds, and finds the cup in the bowl on the floor for
referent ¢; within 10 seconds. We believe that there is a lot of room for further
efficiency gains which, as we argued earlier, should be seen as a separate issue
from the generative capabilities of the system. For example, when referring to
an individual, we can disable the disjunction rule. This reduces generation time
for referent ¢; from 10 to 4 seconds. Furthermore, the use of a rule system that
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runs on top of Java involves considerable overhead that could be removed by
employing a lower-level implementation language.

3.2 The ‘Recursion’ Problem for Relations

Dale and Haddock [2] describe a problem of infinite regress or ‘recursion’ that
occurs when extending the incremental algorithm to relations. The problem can
be recreated in our example domain. Let us assume that our goal is to describe
the cup that is in the bowl on the table, i.e. ¢o. An infinite regress occurs because
the system can always prefix the cups in to a description of the bowls containing
the cups (like 12 and 15 in figure B)) and the bowls containing to a description of
the cups in the bowls (like NPs 11 and 14). This is possible because in each case
the focus extension is reduced from 3 to 2 domain objects so that the extension-
reduction constraint defined earlier is not violated.

The fact that the recursion problem can be re-created in our approach shows
its generality. However, in a breadth-first style algorithm like ours, the problem is
less severe because a solution is found in one of the parallel branches of the search
tree, after which search can stop, knowing that the infinite recursive branch will
result in a higher cost than some alternative solution obtained already. This
search-based solution to the recursion problem is different from the proposal of
Dale and Haddock in that it does not require any form of check for structural
repetitions.

4 Comparison to Previous Work on GRE

Our domain representation language bears similarities to the graph approach
of Krahmer et al. [9], the major difference being the addition of a subsumption
hierarchy and a different representation of attributes. In contrast to the graph
approach, we separate descriptions (logical forms) and domain model. This has
the advantage of not having to express logical formulae in the domain represen-
tation language where graphs encounter problems when it comes to representing
disjunctions, for example. A further difference is the integration with surface
realization: this makes surface-based costs available for decisions about referring
expressions. In contrast, the graph approach requires costs to be attached to the
edges of the domain graph. Arguably, these costs are more difficult to obtain.
Using the number of words as a cost metric as we did in this work is just a simple
illustration of the possibilities of this integration.

Gardent [5] integrates logical form construction and surface realization in a
constraint-based approach. Search finds solutions in ‘increasing order of size’.
Other search strategies and cost functions are not discussed. Gardent observes
that the graph-based approach to domain representation becomes less intuitive
when applied to relations of arity higher than two. This also applies to our
domain representation language. However, propositional nodes may offer a way
out. For example, we could use ternary ‘in-between’ and ‘give’ nodes.
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In contrast to the incremental algorithm [3] and its extensions, our approach
crucially involves search. It finds globally best solutions and can correct local
decisions rather than cutting off choices. A further difference is the notion of
‘distractors’ used in the incremental algorithm, which in our terminology corre-
sponds to the extension set minus any referents it contains.

Horacek [[7] describes a best-first search algorithm that works by expanding a
tree structure representing the state of the search. The algorithm uses an A*-style
notion of future minimum costs. However, it is not entirely clear if choosing the
locally best expansion point can lead to globally non-optimal results. Integration
with realization is not described.

5 Discussion and Future Work

The work presented in this paper is limited to the generation of purely referential
expressions, ignoring attributive descriptions [6]. However, it should be possible
to incorporate goals such as motivating somebody to make a purchase into the
computation of preference scores, allowing for trade-offs between the preference
for least complexity and other goals.

Furthermore, scalability is an important issue. Using larger domain models
and additional grammar rules will increase the search space. However, we believe
that these issues can be solved in practical applications for all cognitively plau-
sible levels of NP complexity. On the other hand, we freely acknowledge that
this has to be demonstrated in an implementation.

Costs such as NP complexity and surface length do not take the extension
size or the presence of intended referents in the extension set into account. It
could be argued that negation constitutes an ‘indirect’” way of arriving at a de-
scription of intended referents: the system first aims to describe the complement
of the intended referents (or at least a subset of these), and then negates it. In-
corporating search strategies that take these considerations into account is left
to future work.

In ongoing work we address remaining errors of the output candidates. For
example, when edges are combined, their extension changes. This in turn can
result in the apparent need for non-monotonic changes of the corresponding
realizations, for example trying to re-use the bowls to generate the bowl (on
the table). One technique to prevent such non-monotonic changes is to delay
morphological realization [16]. Our current implementation uses shallow methods
to ‘adjust’ morphology.

Another problem is ambiguity of surface forms, in particular when using
logical connectives. For example, in the musicians holding the drum or the in-
strument, the musicians can 1) only hold the drum or 2) hold the drum or the
instrument. In our current implementation, we introduce a comma before or to
at least enforce one of the readings in such cases. This may not be a very prin-
cipled approach but it should be noted that ambiguity from a parsing (reader)
perspective is a general issue for NLG systems which is not confined to GRE or
overgeneration approaches.
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6 Conclusions

We presented a new approach to the generation of referring expressions. By
using overgeneration, we can focus on how to consistently treat a wide range of
phenomena rather than trying to prematurely optimize or restrict our algorithm.
We found that at the level of logical form construction (description building),
using the extension as the main ‘interface’ between descriptions results in a
consistent treatment of arbitrarily complex descriptions involving positive and
negated relations. Our search algorithm can be seen as a generalization of the full-
brevity algorithm to arbitrary monotonic cost functions. We offer an alternative
solution to the ‘recursion’ problem for relations identified by Dale and Haddock.
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