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Abstract. Ontologies provide an attractive basis for the representation of seman-
tic information to be attached to multimedia information. However, the flexibility
available to develop one’s own ontology or partially reuse an existing ontology
means that human input is unavoidable in the process of creating the annota-
tions. We address the issue of how to use ontology reasoning services and natural
language generation to provide presentations of relevant ontology structures for
human use.

1 Capturing Intended Meanings with Ontologies

Multimedia resources are complex spatio-temporal signals providing information at
several levels of abstraction. How to make the huge amount of multimedia information
more easily accessible to automatic processing of multimedia resources by programs
is an important issue. One possible solution is to associate multimedia resources with
some annotations, with the help of which automatic processes have better understanding
of the contents of multimedia resources. However, annotations alone do not establish
the semantics of the vocabulary used in the annotations.1

One way of giving meaning to annotations is to provide some external agreement on
the meaning of a set of information properties. For example, the Dublin Core Metadata
Element Set [4] provides 15 ‘core’ information properties, such as ‘Title’, ‘Creator’,
‘Date’, with descriptive semantic definitions (in natural language). One can use these
information properties in, e.g., RDF or META tags of HTML. The limitation of the
‘external agreement’ approach is its inflexibility, i.e., only a limited range of pre-defined
information properties can be expressed.

An alternative approach is to use ontologies to specify the meaning of Web re-
sources.Ontology is a term borrowed from philosophy that refers to the science of
describing the kinds of entities in the world and how they are related. In computer
science, ontology is, in general, a ‘representation of a shared conceptualisation’ of a
specific domain [6, 13]. It provides a shared and commonvocabulary, including impor-
tant concepts, properties and their definitions, andconstraints, sometimes referred to as
background assumptions regarding the intended meaning of the vocabulary, used in a
domain that can be communicated between people and heterogeneous, distributed ap-
plication systems. The ontology approach is more flexible than the external agreement
approach because users can customise vocabulary and constraints in ontologies.

1 For example, an annotation asserting that the object in an image is an elephant does not explain
what elephants are.
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Example 1.The meaning of a user-defined concept ‘adults’ can be specified as ‘persons
whose age are at least 18’, where ‘persons’ can be an atomic concept in an ontology:2

Adult ≡ Person u ∃age.atleast18.

In general, there are at least two advantages of the ontology approach in creating
multimedia annotations: (i) It is more flexible; uses can define the vocabulary needed in
their domain. (ii) Aspects of the intended meaning of these vocabulary can be explicitly
represented. However, while the above advantage (ii) makes it possible for ontology
experts to check the intended meaning of terms defined in an ontology, it is usually too
hard for ordinary users to check such intended meaning by themselves.

In this paper, we address the issue of how to use ontology reasoning services and
natural language generation to provide human-readable presentation of parts of ontolo-
gies. We claim this is an important way to support human users who have to create
multimedia annotations. The rest of the paper is organised as follows. After a brief in-
troduction of ontology languages (Section 2), we argue that the human beings play an
important role in creating multimedia annotations. Based on this observation, we dis-
cuss techniques on how to generate natural language to represent axioms in ontologies,
with the help of classification (Section 4). We provide a worked example (Section 5) to
illustrate our approach before we conclude the paper.

2 Ontology Languages

The technique presented is not restricted to any specific ontology language. As the OWL
Web Ontology Language is based on Description Logic, here we will assume that we
will use a Description Logic as the ontology language.

Description Logics (DLs) [2] are a family of class-based knowledge representation
formalisms, equipped with well-defined model-theoretic semantics [1]. A Description
Logic L consists of an alphabet of distinct concept names (C), role names (R) and
individual (object) names (I); together with a set of constructors to construct concept
and role descriptions (also calledL-conceptsandL-roles, respectively). DLs have a
model theoretic semantics, which is defined in terms of interpretations. Aninterpreta-
tion (written asI) consists of adomain(written as∆I) and aninterpretation function
(written as·I), where the domain is a nonempty set of objects and the interpretation
function maps each individual namea ∈ I to an elementaI ∈ ∆I , each concept name
CN ∈ C to a subsetCNI ⊆ ∆I , and each role nameRN ∈ R to a binary relation
RNI ⊆ ∆I × ∆I . The interpretation function can be extended to give semantics to
L-concepts andL-roles (see table 1 for the semantics of concept and role descriptions
of OWL DL). Let C,D beL-concepts,C is satisfiableiff there exist an interpretation
I s.t.CI 6= ∅; C subsumesD iff for every interpretationI we haveCI ⊆ DI . A DL
knowledge base consists of a set of axioms. Due to the limitation of space, here we only
introduce concept inclusion axioms. A concept inclusion axiom is of the formC v D,
whereC, D areL-concepts. An interpretationI satisfiesC v D if CI ⊆ DI .

2 Please refer to Section 2 for details of the following Description Logics syntax. Note that
the Semantic Web standard ontology language does not support customised datatype, such as
atleast18, which is supported by a datatype extension of OWL DL, called OWL-Eu [10].
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Abstract Syntax DL Syntax Semantics
Class(A) A AI ⊆∆I

Class(owl:Thing) > >I =∆I

Class(owl:Nothing) ⊥ ⊥I = ∅
intersectionOf(C1, C2, . . .) C1 u C2 (C1 u C2)

I = CI1 ∩ CI2
unionOf(C1, C2, . . .) C1 t C2 (C1 t C2)

I = CI1 ∪ CI2
complementOf(C) ¬C (¬C)I = ∆I \ CI

oneOf(o1, o2, . . .) {o1}t {o2} ({o1}t {o2})I = {o1I , o2
I}

restriction(R someValuesFrom(C)) ∃R.C (∃R.C)I = {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
restriction(R allValuesFrom(C)) ∀R.C (∀R.C)I = {x | ∀y.〈x, y〉 ∈ RI → y ∈ CI}
restriction(R hasValue(o)) ∃R.{o} (∃R.{o})I = {x | 〈x, oI〉 ∈ RI}
restriction(R minCardinality(m)) > mR (> mR)I = {x | ]{y.〈x, y〉 ∈ RI} ≥ m}
restriction(R maxCardinality(m)) 6 mR (6 mR)I = {x | ]{y.〈x, y〉 ∈ RI} ≤ m}
restriction(T someValuesFrom(u)) ∃T.u (∃T.u)I = {x | ∃t.〈x, t〉 ∈ T I ∧ t ∈ uD}
restriction(T allValuesFrom(u)) ∀T.u (∀T.u)I = {x | ∃t.〈x, t〉 ∈ T I → t ∈ uD}
restriction(T hasValue(w)) ∃T.{w} (∃T.{w})I = {x | 〈x, wD〉 ∈ T I}
restriction(T minCardinality(m)) > mT (> mT )I = {x | ]{t | 〈x, t〉 ∈ T I} ≥ m}
restriction(T maxCardinality(m)) 6 mT (6 mT )I = {x | ]{t | 〈x, t〉 ∈ T I} ≤ m}
ObjectProperty(S) S SI ⊆ ∆I ×∆I

ObjectProperty(S′ inverseOf(S)) S− (S−)I ⊆ ∆I ×∆I

DatatypeProperty(T ) T T I ⊆ ∆I ×∆D

Table 1.OWL concept and property descriptions

In this paper, we use a well known DL reasoning service calledclassification, which
is putsconcept namesin their proper place in a taxonomic hierarchy (according to
subsumption). As a result of classification, we can obtain the following for a named
conceptX:

1. the named concepts that areequivalentto it;3

2. the named concepts that itcovers(minimally subsumes);4

3. the named concepts that itis covered by(is minimally subsumed by).5

If necessary, the basic subsumption relation can be recovered from this information.

3 The Human Element in Annotation

A number of research projects have investigated how annotations for the Semantic Web
can be semi-automatically derived for existing Web documents, and these could be
adapted for textual documents in general. Techniques include using information extrac-
tion (IE) systems that exploit information in particular ontologies [5], providing special

3 X is equivalent toY iff X subsumesY andY subsumesX.
4 X coversY iff X subsumesY , Y is not equivalent toX, and wheneverX subsumesZ and
Z subsumesY thenZ is equivalent toX or Y .

5 X is covered byY iff Y subsumesX, Y is not equivalent toX, and wheneverY subsumesZ
andZ subsumesX thenZ is equivalent toX or Y .
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user interfaces that facilitate human markup of text [14] and using machine learning to
infer general extraction patterns from texts that have already been marked up by humans
[3]. However, these approaches all assume at least one of the following:

– Ontology terms always map in a straightforward way onto words in a document
and vice versa. Yet it is clear that subtle aspects of content are not always signalled
in a simple way by specific keywords.

– Generic patterns suffice to detect in natural language relationships from all specific
ontologies. This ignores the fact that specific domains can have their own sublan-
guages and domain-dependent forms of expression (beyond single words).

– Information extraction expertise is available to create specific patterns for every
ontology. This is unrealistic, given the specialised nature of IE expertise.

– Human involvement is required, to augment and edit any annotations that can be
automatically created and/or create a training corpus for machine learning.

It is clear that, at present, significant human involvement is required for construct-
ing document annotations fortextualdocuments. For multimedia resources that are not
textual, human involvement is indispensible. In addition, domain experts must make a
significant contribution not only to creating annotations, but also to choosing an ontol-
ogy in the first place (from among possibly a number of existing options) and also tai-
loring an existing ontology to meet the needs of the new application. But how will these
people acquire the expertise to reliably understand and use the distinctions provided by
the ontologies they need to work with? A number of tools have been built to enable a
user to visualise the structure of an ontology (using mainly graphical approaches), but
these tools are mainly designed for knowledge engineers, rather than domain experts or
casual ontology users.

4 Natural Language Presentation of Ontologies

We believe that natural language is an important medium to exploit in presenting on-
tologies (or parts of them) to their users. To understand natural language, a user does not
require any specialised training. Natural language is also well equipped to express the
complex logical structures that arise in modern ontologies. Thus our research is trying
to find ways of exploiting this medium. An ontology takes the form of a set of logical
axioms, and so the challenge is to present the material of these axioms in comprehen-
sible way using a language such as English. However, it is important to take on board
the fact that the axioms may not come in a form ready for direct realisation in English.
The axioms represent one possible way that the material could have been expressed,
but there are many other possible ways that this could have been done equally well. For
the ontology writer, the choice is arbitrary – because one can rely on reasoning services
for ontologies, it is not necessary to worry about which of the many logically equiv-
alent methods of expression to use. This means however that reasoning services must
also be be used in natural language generation. The most relevant things to say may not
be explicitly stated, but nevertheless may follow from the axioms. So determining the
content to be expressed can be seen as a kind ofinferencefrom the axioms [8].
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We now consider how theclassificationreasoning service can be used to provide
the basic elements of a natural language answer to two types of questions that people
ask when they are familiarising themselves with an ontology or seeking to use it for
making distinctions.

4.1 AnsweringWhat is X?

To answer this question, we first of all classify all concepts, includingX. The following
can then be used to extract the key things to be expressed in an answer:

– FindZ such thatX is equivalent toZ (to say “Xs areZs”). In addition, if there is
an axiom directly statingX ≡ Z, for some possibly complex conceptZ, then this
axiom can be stated.

– FindZ such thatX is covered byZ (to say “anX is a kind ofZ”).
– FindZ such thatX coversZ (to say “Xs includeZs”).

The facts retrieved by these steps are closely related to the “identification”, “at-
tributive” and “constituency” rhetorical predicates used in McKeown’s “identification
schema” [7], and the overall answer could be constructed using the pattern of that
schema. It would also be possible to recurse through theZ ’s introduced in the final
step, this giving the effect of the “constituency schema”.

4.2 AnsweringWhat is the difference between X and Y?

For this question, again all concepts should initially be classified, and in addition the
conceptsXtY,Xu¬Y andY u¬X should be named and classified. Useful information
for an answer can then be read from the classification results as follows:6

– FindZ such thatX t Y is covered byZ (to say “Xs andY s are bothZs”).
– Find minimalZ such thatZ subsumesX and it is not the case thatZ subsumesY

(to say “AlthoughXs areZs,Y s are not necessarily so”).7

– Find minimalZ such thatZ subsumesY and it is not the case thatZ subsumesX
(to say “AlthoughY s areZs, Xs are not necessarily so”).

– Find maximalZ such thatX subsumesZ and it is not the case thatY subsumesZ
(to say “WhereasZs are a kind ofX, they are not necessarily a kind ofY ”).

– Find maximalZ such thatY subsumesZ and it is not the case thatX subsumesZ
(to say “WhereasZs are a kind ofY , they are not necessarily a kind ofX”).

– Find Z such thatX u ¬Y subsumesZ (to say “Whereas Zs are a kind of X, they
are never a kind of Y”).

– Find Z such thatY u ¬X subsumesZ (to say “Whereas Zs are a kind of Y, they
are never a kind of X”).

6 If negations of named concepts are also classified, other possibilities not discussed here include
findingZ such thatZ subsumesX and¬Z subsumesY (to say “AlthoughXs areZs,Y s are
neverZs”).

7 A good way to find minimalZ subsuming or subsumed by something, and satisfying another
condition, is to search through increasingly long paths of the transitive closure of the “covers”
relation terminating when the condition is met. Similarly for maximalZ.
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Again, ways to organise this material as a coherent text can be found in the natural
language generation literature, e.g. McKeown’s “compare and contrast” schema and the
work of Milosavljevic [9].

5 Worked Example

In this section, we apply our approach to a slightly revised version (for the sake of pre-
sentation) of the well know pizza ontology (http://www.co-ode.org/ontologies/
pizza/ ).

SpicyPizza ≡ Pizza u ∃has.SpicyTopping (1)

VegPizza ≡ Pizza u ∀has.VegTopping (2)

AmericanHot ≡ Pizza u ∃has.HopGreenPepperTopping u ∃has.DairyTopping (3)

HopGreenPepperTopping v SpicyTopping (4)

Caprina ≡ Pizza u ∃has.TomatoTopping (5)

TomatoTopping v VegTopping (6)

VegTopping v ¬(FishTopping tMeatTopping t DairyTopping) (7)

SpicyPizza v ForeignPizza (8)

VegPizza v HealthyPizza (9)

SpicyButNotVegPizza ≡ SpicyPizza u ¬VegPizza(10)

VegButNotSpicyPizza ≡ VegPizza u ¬SpicyPizza(11)

SpicyOrVegPizza ≡ SpicyPizza t VegPizza(12)

Note that, following our approach described in the previous section, we introduce ax-
ioms (10)-(12) into the ontology only for the second question below.
What isAmericanHot?

The classification service tells us thatAmericanHot is covered bySpicyPizza, and
there are no named concepts thatAmericanHot is equivalent to or covers. There is also
one axiom directly stating a complex concept equivalent toAmericanHot. Therefore,
our explanation ofAmericanHot is as follows: “AmericanHot is a kind ofSpicyPizza.
AmericanHots arePizzas thathave HopGreenPepperTopping andhave DairyTopping”.
What is the difference betweenSpicyPizza andVegPizza?

Axioms (10)-(12) are now added to the ontology, but (since they are not concepts in
the original ontology) the concepts defined in these axioms are ignored in the selection
of concepts to be used in the natural language explanation. The classification service
tells us the following:

i SpicyOrVegPizza is covered byPizza,
ii SpicyPizza is covered byForeignPizza, which does not subsumeVegPizza,

iii VegPizza is covered byHealthyPizza, which does not subsumeSpicyPizza,
iv VegPizza coversCaprina, butSpicyPizza does not subsumeCaprina,
v SpicyButNotVegPizza coversAmericanHot.
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There are also two axioms directly definingSpicyPizza andVegPizza. Therefore, our
explanation of the difference betweenSpicyPizza andVegPizza is as follows:

“SpicyPizzas arePizzas thathave SpicyTopping. VegPizzas arePizzas
that have VegTopping. (i) SpicyPizzas andVegPizzas are bothPizzas. (ii)
AlthoughSpicyPizzas areForeignPizzas,VegPizzas are not necessarily so. (iii)
Although VegPizzas areHealthyPizzas, SpicyPizzas are not necessarily so.
(iv) WhereasCaprinas are a kind ofVegPizza, they are not necessarily a kind
of SpicyPizza (v) WhereasAmericanHots are a kind ofSpicyPizza, they are
never a kind ofVegPizza.”

6 Conclusion and Outlook

It has been argued that ontologies can be very helpful for multimedia annotations. With
the fast development of the research and applications of ontologies, users will soon face
a serious issue: given a set of ontologies about the same topic, which one suits their
multimedia application best? In this paper, we have addressed the issue of how to use
ontology classification reasoning service and natural language generation to provide
presentations of relevant ontology structures for ontology users. The motivation of this
research is illustrated in the example presented in Section 5. Axioms (1)-(9) are hard
to understand for users without a logical background to understand. Although ontology
editors can help organising axioms in ontologies and providing graphic representations
of axioms to some extent, natural language explanations of the structure underlying the
axioms are still necessary. In this paper, we have discussed how to provide explanations
for the two questions: “What isX” and “What is the difference betweenX andY ”,
which are two useful questions potential users of ontologies would like to ask.

More complex questions (e.g.What kinds of people have supervisors?) can be an-
swered by constructing and naming the appropriate complex concept descriptions (here,
X≡ Personu∃supervisor) and answering one of the above questions for that concept.
Such concepts introduce more complex natural language realisation issues than sim-
ple named concepts. However, whereas previous work does not address the problem
of selecting which facts to present, there are appropriate natural language generation
techniques for handling the realisation of complex concepts, as used for instance in the
Prot́eǵe OWL plugin [11] and older work with DLs [15].

Because there are an infinite number of possible concepts expressible with a given
set of atomic concept and property names, it would be impossible to compute subsump-
tion relationships beween all possible pairs of concepts. Thus the classification reason-
ing service only considers the relationships between named concepts. This means that,
for instance, when answering a questionWhat is a student?the above approach might
be able to sayA student is a kind of personbut it would not be able to respond withA
student has an academic supervisor, unless the concept∃supervisor.Academic hap-
pens to have been named (and this expansion of the name can be retrieved). In the above,
we have artificially named certain extra concepts to be classified, but we cannot know
in advance all complex concepts that might be informative in the answer to a question.
Further work will address this problem, possibly using approaches from approximate
reasoning [12] to generate candidate plausible concepts.
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