
Flexible Natural Language Access to
Community-Driven Metadata

F. Hielkema, P. Edwards, and C. Mellish

Department of Computing Science
University of Aberdeen

{fhielkem, pedwards, cmellish}@csd.abdn.ac.uk

Abstract. A key issue in the Semantic Web is providing easy access to
metadata for non-computer scientists. We believe that natural language
is the best medium for this, and that the metadata framework should
be open-ended in nature. We discuss four challenges: what type of in-
terface to use, how to associate linguistic information with ontologies,
how to achieve open-endedness, and how to stimulate collaboration. A
metadata elicitation tool is described that uses natural language gen-
eration to shape the interface, and integrates dynamic ontologies with
folksonomies. Finally, we argue for a new annotation mechanism which
associates linguistic information with ontology resources.

1 Introduction

In the PolicyGrid1 project we are investigating how best to support social science
researchers through the use of Semantic Grid [1] technologies. The Semantic Grid
is often described as an ‘extension of the current Grid in which information and
services are given well-defined meaning, better enabling computers and people
to work in cooperation’. Semantic Grids thus not only share data and compute
resources, but also share and process metadata and knowledge. Our work [2]
involves close collaboration between computer scientists and social scientists.
These interactions have allowed us to explore a range of issues, including: the
extent to which these researchers are comfortable with the Grid as a framework
for research practice and collaboration; if ontologies are appropriate (and ac-
ceptable) to this community as a way of representing concepts to facilitate their
research activities; the utility (or otherwise) of existing metadata frameworks in
use by the social sciences; and how best to integrate e-science tools and meth-
ods into existing working practices. A key aspect of our work is concerned with
support for creation of metadata and access to resources annotated by meta-
data. We argue that support for these activities by ‘normal’ (i.e. non computer
scientist) users is an important challenge for the entire Semantic Web/Grid re-
search community. Such users are unlikely to understand the finer points of logic
formalisms and formal languages, therefore metadata must be presented in an
1 Funded under the UK Economic and Social Research Council e-Social Science pro-

gramme; grant reference RES-149-25-1027 (http://www.policygrid.org)



accessible format that is easy to understand, allowing users to perform a range
of metadata operations (creation, querying, browsing). As most members of the
social science community are unfamiliar with complex formalisms such as RDF,
this makes them a representative group for the ‘non-computer science users’
of the Semantic Web/Grid. Within PolicyGrid we are providing a shared Grid
repository for social science resources, such as datasets and publications. These
resources need an associated description, which should be provided by the user.
The first step, therefore, is to provide a tool for metadata elicitation that enables
users to create a description of their resources using RDF.

The social science research domain is difficult, if not impossible, to capture
in a static ontology. Social scientists argue that concepts are imprecise, con-
tested and mutable [3]: subject to many, conflicting and changing definitions.
We therefore need a more dynamic, flexible structure that is open-ended and
changes with the users. In this paper we argue that the solution lies in creat-
ing ‘community-driven ontologies’, in two ways: first, enabling users to extend
ontologies easily, and second, integrating these dynamic ontologies with folk-
sonomies [4, 5]. A folksonomy is a social classification process where users can
annotate their resources with keywords or tags, which are not restricted in any
way. In some folksonomies, e.g. Flickr2, users can use other users’ tags, so that
a set of frequent tags emerges. Using a folksonomy, we can suggest feasible tags
to influence user-behaviour, without restricting the user to a pre-defined set of
concepts. We argue that such a community-driven approach provides us with
the desired open-endedness and avoids the problems associated with trying to
model a rich and varied research domain via a static ontology.

Existing Semantic Grid tools that provide access to metadata are often graph-
ical [6, 7]. However, we believe that natural language is more accessible to new
users than graphical representations, as we all use language in our daily lives,
while graphical readership is an acquired skill [8]. We expect that most of our tar-
get community will be unfamiliar with RDF and graphical presentations thereof;
for them, a natural language representation would be easier to take in and less
susceptible to misinterpretations. We have therefore decided to provide a tool
which utilises natural language to make metadata accessible.

We face four challenges if we want to provide access to collaborative metadata
with natural language:

1. What type of interface do we use, and what drives it? We believe a natural
language generation (NLG) technique, with an underlying ontology to drive
it, is the best approach. Natural language generation can of course be used
when presenting information for the user to browse, but also for metadata
elicitation and query building, by generating a text for the user to edit.
This avoids the problems inherent in parsing language. Section 2 discusses
these issues and describes the implementation of an NLG-tool for metadata
elicitation.

2. To generate language from ontologies, there has to be a lexicon for each
domain, which provides linguistic information for its classes and properties.

2 http://www.flickr.com/



How do we associate this linguistic information with ontologies? How and
where do we represent this linguistic information? Our approach, which in-
volves the use of annotation values to link each resource to a lexicon entry,
is discussed in Section 3.

3. How do we achieve open-endedness? Enabling the user to extend and create
ontologies would be a major step in this direction, but that leaves the issue
of who creates the appropriate linguistic information. In our tool we also
integrate ontologies with more light-weight data structures, i.e. folksonomies,
which do not constrain but advise the user. This is discussed in Section 4.

4. Finally, there is the challenge of stimulating fair and safe collaboration within
and between communities, e.g. through collective tagging. We have yet to
address this challenge in our work, but our ideas in regard to this point are
outlined in Section 5.

Fig. 1. Metadata elicitation tool: a user supplies values for the property main topics.

2 Supporting Natural Language Access to Metadata

A number of tools exist that provide natural language access to metadata. One
such system for the Semantic Web is GINO [9], an ontology editor with an ap-
proach reminiscent of NL-Menus [10], where the user constructs a query word for



word by selecting terms from menus. Some systems use a controlled language,
e.g. PENG-D [11], to restrict the input. A controlled language takes a small sub-
set of natural language and guarantees successful parsing of all those utterances;
however, the user has to learn what the boundaries of this subset are. Systems
usually restrict what can be said one way or another because parsing all user
utterances is beyond the current state-of-the-art. Tools that generate natural
language from ontologies include Wilcock [12] and ONTOSUM [13]. Wilcock
uses templates, achieving portability but paying a price in expressivity and ac-
curacy, as template-generated text is frequently rather stilted and repetitive.
ONTOSUM assumes the ontologies, provided by the user, contain labels with
the appropriate lexicalisation of their resources. SEWASIE [7] lets users con-
struct their query graphically but gives a natural language representation of
their query as feedback.

A natural language generation approach to knowledge editing is WYSIWYM
(What You See Is What You Meant) [14], where the system does not parse the
user’s utterances but instead generates a feedback text for the user to edit; the
user can add information by clicking on portions of the text and choosing options
from pop-up menus. As the text is not parsed but generated by the system, there
is no need to restrict its expressivity, and the user does not need to learn what
is acceptable. WYSIWYM has been used successfully both for database query
composition [15] and multi-lingual document authoring [16]. Evaluation in [15]
was very positive; the time needed for users to familiarise themselves with the
system was very brief.

Bibliography
'Settlements, Services and Access' was deposited on 23 April 2007. Access 
to it is public. It was deposited by John Farrington. He is its author.

Domain
'Settlements, Services and Access' is supported by this dataset (f2). This 
dataset (f2) was deposited on 1 March 2007. Access to it is private. It was 
deposited by John Farrington.

Fig. 2. WYSIWYM feedback text example.

We believe that WYSIWYM can provide the basis for a single style of inter-
face that supports the user in building, querying or receiving information based
on Semantic Web metadata. To date, we have implemented a tool (see Figure
1) for RDF metadata elicitation; Section 5 discusses our intention to implement
tools for querying and browsing metadata. Our goal is to make this tool easy
to use for users who have no previous experience with metadata and RDF. The
user uploads his resources (e.g. datasets or publications) and describes them in
natural language by editing a WYSIWYM-style feedback text; when he is fin-
ished the text is translated by the system to RDF-triples. Figure 2 shows an
example of a natural language description taken from our interface.



The system is driven by an underlying, lightweight OWL-lite ontology (see
Figure 3) based on the Economic & Social Research Council’s UK Data Archive2.
The UKDA is the largest collection of digital data in the social sciences and hu-
manities in the UK, and uses a schema based on the Data Documentation Ini-
tiative3 (DDI) and the Text Encoding Initiative4 (TEI), which both map onto
Dublin Core but provide more relevant detailed descriptions. We have tried to
keep contested domain information out of the ontology, to avoid the kind of
controversy described in Section 1. Instead, it is very much a utility ontology,
resembling a library catalogue system. It contains a number of ‘domain-neutral’
classes, mostly corresponding to concrete objects, such as Document and Per-
son. These classes have some Dublin Core-like properties such as HasDepositor
and HasAuthor, but also properties with which more about the domain can
be stated (HasMainTopic, UsesMethodology) and how resources relate to each
other(Supports, Contests).

Person
Document

"string"

"date"

"date"

"string"

"date"
Publication Dataset

Is_a

HasDepositor

Is_a

Supported
By

Name

Title

DateOf
Creation

DateOf
Deposit

seeAlso
LexiconEntry:
Supports seeAlso LexiconEntry:

SupportedBy

seeAlso LexiconEntry:
DateOfDeposit

seeAlso

LexiconEntry:
DateOfCreation

DateOf
FirstEdition

seeAlso

LexiconEntry:
DateOfFirstEdition

Supports

inverse

"this 
document"

"this dataset"

"this person"

"this 
publication"

label

label

label

label

Fig. 3. Detail from the UKDA ontology.

The tool employs an underlying semantic graph to store information (see
Figure 4). Initially this is a generic graph, containing only a document and
a date of deposit; all information the user specifies is immediately added to
the semantic graph. This graph is used to generate the feedback text, which is
regenerated every time the user adds information. The feedback text contains

2 http://www.data-archive.ac.uk/
3 http://www.icpsr.umich.edu/DDI/
4 http://www.tei-c.org/



expansion points (anchors) marked in red boldface and green italics, which open
pop-up menus when clicked. The anchors correspond to individuals of classes in
the ontology, while the menu items of an anchor correspond to the properties
that individual can have. When the user selects a menu item and/or specifies
a value, this information is added to the graph and the text is immediately
regenerated. In Figure 1, the user has already supplied some information, e.g.
the title, depositor and authors of the resource he is depositing, where its data
were gathered, and that it is supported by some dataset. He is now supplying one
or more main topics, advised by a ‘tag cloud’ of topics that have been supplied
on earlier occasions by other users.

Person HasAuthor

"John 
Farrington"

Name
DateOfDeposit

SupportedBy

"Settlements, 
Services and 
Access"

"23 April, 2007"

Title

Publication

Dataset

HasDepositor

HasDepositor

"public"

Access

"private"

Access

"male"

Gender

DateOfDeposit

"1 March, 2007" "f2"

ID

"f0"
ID

"f1"

ID

Fig. 4. Semantic graph corresponding to the feedback text in Figure 2.

OWL has two types of property: object and datatype properties. When the
user selects a menu item that corresponds to a datatype property, he is asked
to provide a value for it. The user is free to enter whatever values he wishes. If
he selects an object property, he can select an existing instance (e.g. select an
existing Person as value for the HasAuthor property on a Document). Alterna-
tively he can have the system create a new instance in the appropriate range;
for instance, HasAuthor has as range the class Person, so the system will create
a new instance of that class.

3 Attaching Linguistic Information to Ontologies

Natural language access to ontologies relies on there being a lexicon of some kind
which maps between ontology resources and natural language terms. We can at-
tach lexicalisation information with RDFS via the rdfs:label and rdfs:comment
properties, the former envisaged for specifying the ‘name’ of a resource and the
latter for providing a longer ‘description’. This is essentially the approach as-
sumed by ONTOSUM [13]. But, in spite of the fact that linguistic descriptions
have important internal structure, the values of these properties are simply lit-



erals, which are not controlled in any way and which are not amenable to auto-
mated processing. This seems contrary to the spirit of the Semantic Web. There
is an increasing need for some standard and semantics-aware way of attaching
linguistic information to ontologies.

Our system maps classes (and instances) to noun phrases (e.g. ‘This person’,
‘Thomas’, ‘That Dutch guy in wooden shoes’), while properties are mapped
to dependency trees [17] that represent sentences (with the source and target
individuals inserted, e.g. ‘This person is the author of this document’). These
dependency trees (see Figure 5 for an example) state syntactic properties and
semantic roles (dependency labels) for all words and word groups in the sentence;
nodes representing individual words also have morphological information, stating
verb tense, singular vs. plural, etc.

The advantage of having linguistic structure represented as dependency trees,
rather than fixed templates or strings, comes from the flexibility in how they can
be used. If every use of a property was simply mapped to a fixed sentence and
then shown, the text would risk becoming very repetitive (e.g. ‘This document
was deposited on 11 May 2007. John is the author of this document. Paul is the
author of this document.’) To make the text more concise, we can perform op-
erations on the dependency trees, e.g. aggregation and pronominalisation. One
case of aggregation is the process of combining two sentences into one; pronom-
inalisation is the substitution of pronouns (he, it) for names and descriptions
(‘John’, ‘this document’). Applying these processes, the text given above would
become: ‘This document was deposited on 11 May 2007. John and Paul are its
authors.’ This is rather more concise and actually more coherent as well. If the
properties were mapped simply onto strings, this effect would be impossible to
achieve; but with dependency trees, these operations are easily implemented.
Another advantage of having these complex dependency trees is that, to realise
a property, the lexicon entry of its inverse can be used, with only some minor
tweaking (e.g. setting the main verb from active to passive). So, for instance,
the information underlying ‘This document was deposited by John Farrington’
could be better realised as ‘John Farrington deposited this document’ in some
circumstances. For these reasons, we deem it desirable to have a more complex
linguistic representation than a simple string; the extra complexity significantly
improves the quality of the generated text.

Figure 3 shows a detail from the UKDA ontology5 that drives the current
system. Each of its classes and properties need to have associated linguistic in-
formation - strings for the classes, dependency trees for the properties. The best
solution is to store this information somewhere within the ontology. But what is
the appropriate way to do this? We believe that the correct approach to repre-
senting linguistic structures is as resources in their own ontology. Our approach
to associate linguistic information with ontologies is then to provide resources
with annotation values that point to these linguistic resources. Although there
may be different ways to represent linguistic information (i.e. different linguistic

5 http://www.csd.abdn.ac.uk/research/policygrid/ontologies/UKDA/UKDA.owl



ontologies, just as there can be different ontologies in any other domain), the
actual linking process can and should be standardised.

SMAIN

VERB

HEAD COMPLEMENT

SUBJECT

word:'support'
actor: passive

NP

insert as: source
word: 
'this publication'

NP

insert as: target
word: 'this dataset'

HasRoot

"string"

Topic

HasChild

Dependency 
Label

HasChild

Insert
Word

Syntactic
Category

Dependency
Label

"source"
"this 
publication"

"SMAIN"

"root"

"subject"

HasChild

Syntactic 
Category

"NP"

Dependency 
Label

Insert

Word

"target"

"this 
dataset" "complement"

Syntactic 
Category

"NP"

Dependency 
Label

isPassive

Word

"true"
"to be"

"head"

Syntactic 
Category

"verb"

LexiconEntry: 
SupportedBy

LinguisticNode: 
SupportedBy1

LinguisticNode: 
SupportedBy3

LinguisticNode: 
SupportedBy2

LinguisticNode: 
SupportedBy4

Fig. 5. Dependency tree (left) and lexicon entry (right) for ‘This publication is sup-
ported by this dataset.’

In our current system, for classes a simple rdfs:label annotation value with the
corresponding noun phrase as its value suffices. We have developed a separate,
linguistic ontology6 in which we can represent dependency trees (see Figure 6).
This ontology is used to represent lexicon entries, as illustrated by Figure 5. A
LexiconEntry points to an individual LinguisticNode, which represents the root
of the represented dependency tree. LinguisticNodes can be Nonterminals or
Leaves. The LinguisticNodes contain lexical information such as the syntactic
category (noun, verb) and the dependency label (denoting the role it plays in
the parent node, e.g. ‘subject’). The Leaves also have a word or phrase, and
morphological information detailing how to inflect that word. They can also have
a property insert, signalling that they are placeholders for the noun phrases that
represent the source or target of the property that is being realised.

Each property in the UKDA ontology has a rdfs:seeAlso annotation pointing
to its corresponding LexiconEntry in the Lexicon ontology. Figure 5 shows the
lexicon entry for the property SupportedBy. It is a simple tree consisting of a
root (SMAIN, the full sentence), a subject, a head verb and a complement. The
verb is set to passive. To get a suitable entry for Supports, the inverse property,
all the system needs to do is take this entry, switch the source and target, and
set the verb to active. For most properties (though not all) the lexical entry of
their inverse can be derived successfully with some minor operations, such as
6 http://www.csd.abdn.ac.uk/research/policygrid/ontologies/Lexicon/Lexicon.owl



switching the locations of the source and target in the sentence, or switching the
main verb between ‘active’ and ‘passive’.

The problem with using the seeAlso and label tags is that they may also
be used for other things. A more elegant solution would be to define a new an-
notation property in OWL/RDFS, perhaps called LinguisticInformation, which
always points to a dependency tree (or at least a linguistic structure in whatever
ontology is chosen). The string corresponding to a class could be stored as a de-
pendency tree with one single node, with syntactic category ‘noun phrase’. To be
suitable for natural language access, ontologies would then have to be supplied
with rdfs:LinguisticInformation annotation values for all their resources.

LexiconEntry LinguisticNodeHasRoot

"string"

Topic

IsPlural

IsGenitive

AddQuotes

IsPassive
Insert

Word

Syntactic
Category

"boolean"

Dependency
Label

"integer"

"string"

"string"

"string"

"string"

"boolean"

"boolean"

"boolean"

Number

1

11

1

LeafNonTerminal

Tense

"string"

Is_a Is_aHasChild

1+

1

Fig. 6. Lexicon ontology.

4 Introducing Open-endedness

Earlier we discussed the problems associated with using static ontologies in e-
social science. Instead of forcing users to use terms or ontologies they (partly)
disagree with, we want to make our ontologies open-ended. This section describes
how we are trying to achieve this.

As stated above, for datatype properties we let users supply whatever values
they wish. However, this is likely to result in an immense proliferation of differ-
ent tags, with every user specifying his own personal favourite terms. Moreover,
it leaves the system vulnerable to typographical and other errors on the part
of the user. To alleviate this problem, we integrate our ontologies with folk-
sonomies, which advises the user of tags that are popular with other users. To
avoid restricting users within a specific ontological framework, we also enable
them to extend the ontology underlying the system by creating new classes and
properties. There are linguistic implications for both these extensions.



4.1 Integrating Ontologies with Folksonomies

By giving users freedom, we have no control whatsoever over the values that are
specified for datatype properties; in other words, we can expect a diversity of
tags, and we cannot prevent erroneous metadata from being created. There is no
way to prevent this without taking away the user’s freedom. However, if we can
advise the user in his choice of tags, this should help to prevent typographical
errors, and support the development of community sets of tags. This should
improves the consistency of resource descriptions (as the likelihood increases that
the same tags are applied rather than synonyms), making it easier to find closely
related resources. To this end we use folksonomies. In terms of the metadata
generated, our folksonomy tags remain as unanalysed literals, rather than being
elements in a tag ontology [5] or being mapped to ontology concepts [18].

Our approach is to have users create semantic metadata, and use folksonomies
to advise them in their choice of tags. If the datatype is a string, a tag cloud
is presented to the user (an example is shown in the lower half of Figure 1); we
chose not to employ the folksonomy technique for numbers, dates and booleans.
Every string datatype property has its own folksonomy, as different values apply
to properties such as HasCountry and UsesMethodology. Every value that users
supply for a string-datatype property is stored in that property’s folksonomy.
These folksonomies are shared by all users. The frequency with which a tag has
been used is reflected in the relative font size when the tag cloud is displayed.
The user can select a tag from the cloud, but can also supply his own tags.
The user therefore retains complete freedom in specifying tags, but is advised
by the folksonomy, which should alleviate the problems of spelling mistakes and
inconsistent tagging.

Linguistic Implications We have no influence over what goes into a folksonomy,
which means that we cannot guarantee that its values will ‘fit’ into the linguistic
tree that a property is mapped to. For example, a user is entirely free to enter a
meaningless value such as ‘–x–’. Currently, the linguistic trees expect two noun
phrases, representing the individuals at the source and the target of the property,
to be inserted; the linguistic tree determines their correct place and supplies their
morphological information. But can we assume that folksonomy values will be
proper noun phrases, amenable to the necessary inflections? As an example of the
latter, imagine someone supplies ‘individuals’ as a value, and the system sets this
to plural: the result would be ‘individualses’, a rather Gollum-like enunciation.

It is likely that we will be unable to guarantee language that is always correct
in terms of syntax and semantics. However, as stated earlier, every property
in the ontology has its own folksonomy, meaning that when a user selects a
tag, it was frequently used before on this property, with this particular textual
representation. We imagine that users are more likely to use those tags that fit
into the text in a conventional, grammatical manner (e.g. they may steer away
from tags resulting in ‘This document’s observation units were individualses’).
If, however, they use tags that result in grammar errors or unclear language,



only the textual representation suffers. Whether the textual representation is
entirely grammatical makes no difference to the underlying metadata.

4.2 Extending the Ontology

As we have discussed, it is desirable for the user to be able to use ontologies and
create metadata, without being restricted by them. The use of folksonomies to
guide (but not dictate) the choice of values helps, but is not the entire answer.
The user has to be able to extend the underlying ontology, so he can add in-
formation that the creators of the ontology had not anticipated. Therefore, in
our tool we are implementing facilities to add new classes and properties to the
underlying ontology. The user has to provide standard ontology features such as
placing classes in the class hierarchy and specifying which properties apply to
them, and specifying domain and range of properties. There are many tools (e.g.
Protégé7) that provide such functionality; however, we aim for something sim-
pler, for ontology-naive users. Users can only specify the above plus cardinality
restrictions, and whether properties are functional; the language constructs of
OWL-lite.

Fig. 7. Creating linguistic information for the property HasMainAuthor.

Linguistic Implications As stated above, for natural language access to be pos-
sible each resource in an ontology needs a lexicon entry. It is straightforward
for the user to provide a noun phrase for a class, but a full dependency tree
is a different matter. We cannot require users to have the necessary linguistic
expertise to create such a structure; neither can the system generate these auto-
matically because of all the inherent quirks of natural language (whether ‘This
7 http://protege.stanford.edu/



document was authored by this person’ is valid is not a question that can be
answered by looking at its syntax). Fortunately, if the system has the linguistic
knowledge, and the user knows what the textual representation should be, they
should be able to generate a lexicon entry together. Our system has a number
of template dependency trees, corresponding to common sentence types with
known syntactic structure. When the user creates a new property, the system
inserts the semantic root of the property name into each template and generates
the corresponding sentence. The user then selects the one closest to what he has
in mind, and fine-tunes it by manipulating individual words, verb tense, adding
or removing modifiers, in ways that are guaranteed to be syntactically legal. An
example is shown in Figure 7, where the user is fine-tuning the natural language
representation for HasMainAuthor. The template selected by the user, one of
those generated by the system, is ‘This document is the author of this person.’
The user first switches the locations of the source and the target in the sentence,
then adds a modifier (‘main’) in front of ‘author’, and finally changes the tense
of the main verb to past tense. The final sentence is thus: ‘This person was the
main author of this document.’ When the user is satisfied the system stores the
corresponding lexicon entry for future use.

5 Future Work

In Section 1, we stated that an important challenge facing us was stimulating col-
laboration in and between communities. We believe that the use of folksonomies
will lead to the emergence of community sets of tags, which should make it easier
to locate resources. We anticipate that the same approach will also help in bridg-
ing between communities, especially if we allow collective tagging, i.e. enabling
users to add to the description of resources deposited by others. Users should be
able to annotate resources belonging to other communities, thereby stimulating
collaboration. This mechanism does of course raise issues of fairness and safety.
Can one user render another’s data useless by giving it spurious annotations?
How can this be prevented? How are different opinions fairly represented? These
are as yet open questions.

We are now designing tools for querying and browsing metadata, building
upon our experience of developing a metadata elicitation tool. One can imagine
a researcher formulating a query by describing the resource he is looking for, e.g.
‘The authors of this document include Hielkema, Mellish and Edwards.’ could
initiate a search for this paper. When presenting information, anchors in the
feedback text would signal points where the user could click to see additional,
more detailed or related information. This would enable the user to browse
through a ‘community’ of related papers and data.

We are about to commence two user studies to evaluate the metadata elic-
itation tool. In the first, our purpose is to measure the tool’s usability and its
usefulness compared to writing natural language. Participants have three main
tasks: (i) describe one of their own datasets using a text editor; (ii) after a short
demonstration of the tool, each user is given the same four resource descriptions



(in randomised order) and is asked to create similar descriptions using the tool.
By comparing the time and the number of operations it takes participants to
complete each description, and the percentage of correct descriptions, we hope to
prove our hypothesis that users will become proficient after only a few attempts;
(iii) users take the dataset they described in task i, and describe it again using
our tool. Using the differences between the two descriptions, and user feedback,
we want to determine whether the tool was limiting what they could express, and
conversely, if it ever inspired them to add additional information. The second
experiment focuses on the creation of new ontology resources and their lexicon
entries. Each user is given three class and three property names, and asked to
write down a suitable natural language representation. They are then asked to
create these resources and their lexicon entries with the tool. Again we want to
measure usability by comparing completion time and the number of operations
used. We can measure how many users succeeded in producing the linguistic
representation they wanted; we will ask them to report difficulties, whether the
natural language they created was satisfactory, and whether they think this
open-ended functionality is worthwhile.

6 Conclusion

We have discussed four challenges which have to be addressed to access collab-
orative metadata using natural language: what type of interface to use, how to
associate linguistic information with ontologies, how to achieve open-endedness,
and how to stimulate collaboration. We believe that WYSIWYM, a natural
language generation technique is the best approach, to avoid the problems in-
herent in parsing. Evaluation of another WYSIWYM-tool[15] has shown that
this method is quickly mastered by novices, as it requires no experience with
formal languages but instead relies on the user’s natural language capabilities.
We believe that the same approach should be suitable for query building and
information browsing. We have developed a Lexicon ontology that stores the
linguistic information needed to generate language from ontologies. We propose
the creation of a new annotation value, e.g. rdfs:LinguisticInformation, which
would associate resources with their lexicon entry. Open-endedness is achieved
by integrating ontologies with folksonomies, and enabling users to extend the
underlying ontologies by creating new properties and classes. The fourth chal-
lenge, how to stimulate collaboration, is still largely unaddressed; we hope to
tackle the issues associated with this in future.

References

1. De Roure, D., Jennings, N., Shadbolt, N.: The Semantic Grid: Past, Present and
Future. In: Proceedings of the IEEE 93(3). (2005) 669–681

2. Edwards, P., Chorley, A., Pignotti, E., Hielkema, F.: Using the Semantic Grid
to Support Evidence-Based Policy Assessment. In Chen, H., Wang, Y., Cheung,
K., Studer, R., eds.: Semantic eScience (Papers from the 2007 AAAI Workshop),
AAAI Technical Report WS-07-12, AAAI Press, 2007, to appear. (2007)



3. Edwards, P., Aldridge, J., Clarke, K.: A Tree Full of Leaves: Description Logic and
Data Documentation. In: Proceedings of the Second International Conference on
e-Social Science, Manchester, UK (2006)

4. Guy, M., Tonkin, E.: Folksonomies: Tidying up Tags? D-Lib Magazine 12(1)
(2006)

5. Gruber, T.: Ontology of Folksonomy: A Mash-up of Apples and Oranges.
http://tomgruber.org/writing/ontology-of-folksonomy.htm (2005)

6. Handschuh, S., Staab, S., Maedche, A.: Cream: creating relational metadata with
a component-based, ontology-driven annotation framework. In: K-CAP ’01: Pro-
ceedings of the 1st international conference on Knowledge capture, New York, NY,
USA, ACM Press (2001) 76–83

7. Catarci, T., Dongilli, P., Mascio, T.D., Franconi, E., Santucci, G., Tessaris, S.: An
Ontology-based Visual Tool for Query formulation Support. In: Proceedings of the
Sixteenth European Conference on Artificial Intelligence (ECAI 2004). (2004)

8. Petre, M.: Why Looking isn’t always Seeing: Readership Skills and Graphical
Programming. Communications of the ACM 38(6) (1995) 33–44

9. Bernstein, A., Kaufmann, E.: Gino - a guided input natural language ontology
editor. In: International Semantic Web Conference 2006. (2006) 144–157

10. Tennant, H., Ross, K., Saenz, R., C.W.Thompson, Miller, J.: Menu-based Natural
Language Understanding. In: Proceedings of the Twenty-first Annual Meetings
on Association for Computational Linguistics, Cambridge, Massachusetts (1983)
151–158

11. Schwitter, R., Tilbrook, M.: Controlled natural language meets the semantic web.
In: Proceedings of the Australasian Language Technology Workshop 2004. (2004)

12. Wilcock, G.: Talking OWLs: Towards an Ontology Verbalizer. In: Human Lan-
guage Technology for the Semantic Web and Web Services (ISWC’03), Sanibel
Island, Florida (2003) 109–112

13. Bontcheva, K.: Generating tailored textual summaries from ontologies. In: ESWC.
(2005) 531–545

14. Power, R., Scott, D., Evans, R.: What You See Is What You Meant: direct knowl-
edge editing with natural language feedback. In: Proceedings of the Thirteenth
European Conference on Artificial Intelligence, Brighton, UK (1998)

15. Hallett, C., Scott, D., Power, R.: Composing Questions through Conceptual Au-
thoring. Computational Linguistics 33(1) (2007) 105–133

16. Bouayad-Agha, N., Power, R., Scott, D., Belz, A.: PILLS: Multilingual Generation
of Medical Information Documents with Overlapping Documents. In: Proceed-
ings of the Third International Conference on Language Resources and Evaluation
(LREC 2002), Las Palmas (2002) 2111–2114

17. Mel’cuk, I.: Dependency Syntax: Theory and Practice. State University of New
York (1988)

18. Al-Khalifa, H., Davis, H.: FolksAnnotation: A Semantic Metadata Tool for Anno-
tating Learning Resources Using Folksonomies and Domain Ontologies. In: Pro-
ceedings of the Second International IEEE Conference on Innovations in Informa-
tion Technology, Dubai, UAE (2006)


