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Laboratory Notes CPD
                                                                   Appendix — Experiment 5                                                                                                           


APPENDIX  1

THEORY  AND  BACKGROUND  TO  EXPERIMENT 5

General Remarks

The motivation for developing this investigation was to update the classic experiment on stationary waves on a vibrating wire, formerly done with tuning forks to set specific frequencies, and weights hanging on the wire passed over a pulley to apply known tensions.  In the event it proved to be a difficult task to monitor frequency and tension using sensors.  In particular:-

1. The limited sampling frequency of typical school sensors meant that relatively low frequency oscillations of the wire were required to get a trace of reasonable quality from which to determine the frequency.  In this respect the ALBA interface (5 kHz sampling frequency with two sensors) is superior to the PASCO Pasport USB link (1 kHz sampling frequency).  Even so, to keep the frequency of vibration down sufficiently it was necessary to use a thick wire.  It was hope to use a 2 metre length, but we could only locate 1 metre length of stainless steel of suitable diameter (1.6 mm).  The method of obtaining a record of the vibration was based on the following article:

Grattan T and Austin I (1986) “The use of VELA and electromagnetic induction to study vib-rations in strings and low frequency oscillations”  School Science Review 68 (242) 111-114.

2.  The problem of incorporating a force sensor to monitor the tension in the wire whilst still having a “fixed end” condition for establishing stationary waves proved to be more than a little tricky.  The solution was due entirely to the skill and ingenuity of Bob Mowat,  Physics Technician (1997 - 2012), who devised the arrangement shown in Figure 1. 
[image: image1.wmf]þ

ý

ü

î

í

ì

+

-

=

o

2

f

in

1

f

out

V

R

R

V

R

R

V


Fig 1   Coupling of wire to force sensor

APPENDIX  1   (continued)

Amplification
A single wire vibrating between typical pole pieces generates an induced voltage across the wire of the order of a few millivolts, alternating in sign.  Typical ranges of voltage sensors are 5V or 10V.  The ALBA voltage sensor has the advantage that it can be set to either 0 to 5V or -5V to +5V.   Clearly it is desirable to use the former because it involves the smaller total range.  It was therefore decided to use a summing amplifier to achieve both (i) amplification from mV to V and (ii) an offset to shift the output so that it is always positive.

The design uses a LT 1013 CP chip, but a 741 op amp will do just as well.  The circuit diagram is shown in Figure 2.  The values are not critical, but must be chosen to keep the output of reasonable magnitude and comfortably between zero and +5V.  
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Fig 2  Amplifier circuit
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From the theory of the summing amplifier:
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With the values given:-



Vo = – 1.96 volt     and hence     Vout = (– 260 Vin + 1.96) volts

Thus we achieve the gain and offset required.
APPENDIX  1   (continued)

Theory
The natural frequencies of a transversely vibrating wire fixed at each end can be found if we know the speed of propagation of transverse waves along the wire.  The following derivation is brief and to the point, and, as for all things dynamical, rests upon Newton’s 2nd Law of Motion.  Figure 3 shows an infinitesimal element of the wire of length δx with the forces acting on it in the displaced position.  Note that we neglect the stretching of the wire in being displaced from its mean position, and we assume that the tension T in the wire is the same throughout its length and throughout its oscillation.
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Fig 3  Dynamics of a vibrating wire
Resultant force on the element δx  =  
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If m is the mass per unit length of the wire, then the mass of element δx is m δx.

Applying NII, and remembering that the acceleration of the element is also towards the mean position,
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Now
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       (φ is small for a slightly disturbed wire)
Hence
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APPENDIX  1   (continued)

Theory (continued)

Substituting in equation (1)
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Hence
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(2)

The standard wave equation in one dimension is
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   where V is the speed of  propagation of 

the wave.  Comparison with equation (2) shows that, for transverse waves on the wire,
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When the wire is vibrating in its fundamental mode, one half-wavelength occupies the vibrating length L. Hence, the wavelength λ is given by
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The frequency is given by 
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 and hence the fundamental frequency of the wire is
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It is a straightforward matter to show that, for the nth harmonic, 
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Continued . . . . . . . . . . . .
APPENDIX  1   (continued)

Factors affecting the frequencies of a non-ideal wire

Note: A highly recommended reference for a thorough treatment of the vibration of strings and wires is A.B.Wood:  A Textbook of Sound (Section II). 3rd Ed: G.Bell & Sons Ltd. (1960)

Stiffness
Donkin (Acoustics) has derived the following formula for the frequencies of the “harmonic series” of a stiff wire of radius r, length L and tension T, made from material of Young’s modulus E.  Donkin’s result for the fractional change in frequency (caused by stiffness) of the nth harmonic is
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                  (6)

For the wire used in Experiment 5, L = 900 mm, r = 0.80 mm and E = 210 GPa so that
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Taking our working range of tension as 15N to 50N,
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Note that (i) in all cases stiffness causes an increase in frequency relative to an ideal, perfectly flexible wire of the same dimensions and tension;

               (ii) the dependency on n means that the fundamental and overtones of a stiff wire do not form an exact harmonic series.

Yielding of Supports

Rayleigh (Sound Vol I) has calculated the effect on frequency produced by yielding of the supports carrying the wire under tension. 

Let M = mass of yielding support and k = stiffness (i.e. spring constant) of support.  Rayleigh  gives results for two extreme cases:-

(a) Negligible M ; very large k.  The wire is effectively lengthened by 
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 , giving a fractional decrease in frequency which is the same for all overtones, which therefore still form a harmonic series.

APPENDIX  1   (continued)

(b) Negligible k; very large M.  The wire is effectively shortened by 
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 .  In this case there is a fractional increase in frequency which greater, the lower the harmonic component, i.e. the smaller n.  Hence the fundamental and overtones do not form a harmonic series.

Loading of the wire

Loading at any node will leave any harmonics sharing that node unaffected.  All others will be lowered in frequency.  Thus, loading at the mid-point of the wire leaves all even harmonics unaffected, whilst lowering the frequency of all odd harmonics.  Once again the “harmonic” nature of the overtones is upset.
Appendix 2   Reference Table for Pasco and Alba Dataloggers
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Resistor Values:





Rf = 390 kΏ      R1 = 1.5 kΏ       R2 = 390 kΏ       R3 = 15 kΏ       R4 = 100 kΏ
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