

The Opportunities and Challenges of Marine Genetic Resources in ABNJ

Professor Marcel Jaspars, FRSE
Director, Marine Biodiscovery Centre; Leader PharmaSea Consortium
University of Aberdeen
Scotland, UK
m.jaspars@abdn.ac.uk

Why use Marine Genetic Resources?

Offers advantage over comparable terrestrial resource:

Superior performance

Better economics

Unprecedented activity in particular application:

Enzymes: new reactivity/new biotransformation

Small molecules: novel chemical structures & new

mechanism of action

Materials: new properties

Vent Polymerase for DNA amplification Origin: Vent bacterium

Halaven for cancer Origin:
Japanese sponge

MGR Derived Pharmaceutical Products on the Market

All from EEZ apart from 1 (high seas) – All prior to CBD coming into force None rely on harvesting natural source except fish oils

PHARMASE

Pharmaceutical Pipeline

None from ABNJ – mainly reef derived

Mainly anti-cancer with a few analgesics and antivirals

Mainly start-ups at early stage with large pharma at late stage

http://marinepharmacology.midwestern.edu/

Non-Pharma MGR Derived Products on the Market

Production: Recombinant

Owner: New England Biolabs

Cosmetic screening infra-red rays

Origin: Vent bacterium (location unknown)

Production: Bacterial culture

Owner: Sederma (Croda)

THE NEXT-GENERATION, HIGH-PERFORMANCE ALPHA-AMYLASE FOR MASH LIQUEFACTION

Fuelzyme – Enzyme used in biodiesel production

Origin: Deep sea bacterium (location unknown)

Production: Recombinant Owner: Verenium (BASF)

Anti biofilm agents Origin: Red seaweed

Production: Chemical Synthesis

Owner: XXXXX

Fish as Commodity *vs* Fish Valued for its Genetic Properties

Food

Cod

A CONTRACTOR OF THE PARTY OF TH

Cod DNA

A Definition of Marine Genetic Resources?

Marine Genetic Resources: Term has no meaning to biologists and is not defined in UNCLOS but is taken to mean the Nagoya Equivalent:

"Marine genetic material" means any material of plant, animal, microbial or other origin, found in the marine environment, containing functional units of heredity;

"Marine genetic resources" means marine genetic material of actual or potential value"

Marine Genetic Resource Diversity

Animal Diversity

Of the major divisions of animal life ~20 have no representatives on land

Microbial Diversity

There is no clear estimate of marine microbial diversity or its economic value

Biological Resources

The Central Dogma of Molecular Biology

In Silico Data

Bioprospecting vs Biodiscovery

Bioprospecting (Oxford English Dictionary): "the search for plant and animal species from which medicinal drugs and other commercially valuable compounds can be obtained."

Unlike seabed mining, marine genetic resources are not mined.

The MGR are used as **inspiration** to generate a product which is made by other means.

For this reason the words "marine biodiscovery" are used which suggest that it is the inspiration that is important and that the resource is not mined.

Marine Scientific Research/Bioprospecting

MSR vs Bioprospecting

Application

Cruise plan

Award

- Feasibility
- Checks

After Cruise

Cruise report

AA Iyen	LRUPSE	BATT	MARYUMILUAN II	YES HARRY BURNESS	SAMPLES	SPHINTS	DESTRU	MINNEY FREE	BRILINATION
Motion.	shoir	1645700	NAME AND POST OF THE PARTY.	SHROW, NY, AA	STARGETY.	(S.Hellitte	1100.4	300 full large	1435440
Somi-	depts	(4/40)0494	var treenings	FIRETY, CV, AR	Internative	SCHOOLS.	1990.6	Mil-fulberso	JAMARO.
batch	mun.	MACCOINA	THE THIRT GOD	1:100.05, 27V, 3A-	11/80040	33.540,67w	3,000.4	NEE habitance	1815461
botis.	seco	18/40/0008	Non-Yearn-Arab	5.000M, NV.78	11 mgmin	U.380X74	1201.2	165 Sublane	SAMANO
lone.	Mental .	TATIONS.	Author's Lamber's	0.00004 (K. J., In)	***	At his being		Amproprieto	- innotrace
books.	(molt)	INVIVIOUS.	Barbat satura	0.700 M.A. A. A. A.	11 Autobate	AA-MINISTRACE		Amphiptols	entries
Doolie	09(3)	INTEREST	Magazine	2 (000) 645, 5, 16	31.80479			100 full being	JASPART
Sodia-	MUN.	16/40/2818	Negacirie	14903-963-08	(1.804/9)	Makinie		NO luciany	JAJHARI
bonfe.	peyto.	14/17/003	Negative	3.000 PLANCE 3.56	SCHOOL N	11.500040		Stational Nati	SARRAGE
batte.	29/25	19/40/2025	Megacine	2 REST, NY, 2,46	17:4057%	13.39GH2W		Berneral Mcc	DANAMA
Budle-	HILE	DATES	Paperre	1800,923.0	distant.	15.330mHz		Stanfarthy Mail	ADMIT
bert a	Jane 19	INVESTIGATION.	Magazine	3 MICH. Std. 3, 807	11 mil 174	St. Income		Streetwing! Man	(ASSESSED
-	peruns.	IMPORTA	Magianary	0.000 R M J J M	STREET, TO	st-income		Stemania Mari	GRAFFARD.

MSR

- Most cruises are for basic research
- Freedom of MSR, but notify central organisation
- File cruise report (where?)

Bioprospecting

- Require yearly update on cruise report to alert to change of use
- Only needed on commercialisation (not just IP filing, but actual use)

Where Do Research Vessels Go?

Impact of Sampling

Trawling impact ranges from 0.005 to 0.009 km²

Gravity coring leaves a 10cm diameter hole that close within 1 h.

Mega coring in a typical cruise will impact ~0.5m² of seafloor

Removing 0.5m² of seafloor in ABNJ = 0.19cm² of Yellowstone national park

Impact of Sediment Sampling (Estimate)

- Volume of a 1 m long core 15 cm Ø
 = 20 liters
- Estimate 5 cores sampled at same time = 100 liters
- Total sampling points recorded = 100,000*
- Total volume = 10,000,000 liters = 10,000 m³
- Equivalent to 150 x 40 foot shipping containers (66 m³ each)
- Equivalent to a layer 32 picometers (32 x 10⁻¹² m) thick covering ABNJ
- 32 picometers is equivalent to radius of Helium atom

Good Practice for Cruise Data and Samples

Metadata may include

ILocation

IDepth

ITemperature

ISalinity

IpH

IOxygen content

ISeafloor conditions

Sample storage

IAmbient temperature

ICooler (4°C)

IFreezer (-20°C)

I-80°C Freezer

ILiquid nitrogen (-196°C)

IFormaldehyde

IEthanol

IDNA/RNA preservation liquids

Needs standardisation

Monitoring Sample and Data Flows

Possible to track sample from origin to exploitation (but better databases are needed)

Modifications to DNA or compound may make it hard to trace MGR origin

Tracking Samples can be Tricky

Send to: ▼

Organism Overview

ID: 12449

Thermococcus litoralis

Download sequences in FASTA format for genome, protein
Download genome annotation in GFF, GenBank or tabular format
BLAST against Thermococcus litoralis genome, protein

Thermococcus litoralis overview

Lineage: Archaeaf5451: Euryarchaeota[344]; Thermococci[25]; Thermococcales[25]; Thermococcaceae[24]; Thermococcus[17]; Thermococcus litoralis[1]

J Bacteriol. 2012 May; 194(9): 2375–2376. doi: 10.1128/JB.00123-12 PMCID: PMC3347054

Genome Sequence of the Model Hyperthermophilic Archaeon Thermococcus

Andrew F. Gardner, Saniay Kumar, and Francine B. Perler

Author Information ▶ Article notes ▶ Copyright and License Information ▶

This article has been cited by other articles in PMC.

ABSTRACT

Go to: 🖾

The hyperthermophilic archaeon *Thermococcus litoralis* strain NS-C, first isolated in 1985, has been a foundational organism for archaeal research in biocatalysis, DNA replication, metabolism, and the discovery of inteins. Here, we present the genome sequence of *T. litoralis* with a focus on the replication machinery and inteins.

GENOME ANNOUNCEMENT

Go to: 🗹

Thermococcus literalis strain NS-C was isolated from a shallow submarine hot spring at Lucrino Beach near Naples, Italy (1), and successfully grown in culture (14). Since then, T. literalis has been the focus of studies on biocatalysis (10), archaeal metabolism (2, 3, 6, 7, 9, 11, 13, 17, 21), DNA replication (4, 5, 8, 12, 20), and protein splicing (15).

r England Biolabs, Inc.
iplete Genome
pe:Cocci
mumTemperature:85C, TemperatureRange:Hyperthermophilic
icRelationship:FreeLiving, TrophicLevel:Heterotroph
A_000246985.3 ASM24698v3 scaffolds: 1 contigs: 1 N50: 2,215,172 L50: 1
NA81925
il length (Mb): 2.21517
lein count: 2292
%: 43.1

of the model hyperthermophilic archaeon Thermococcus litoralis NS-C. Gardner AF, et al. J Bacteriol 2012 May

Real Benefit Scenario

Benefit Sharing

- Must be multilateral compared to bilateral for Nagoya Protocol
- In most cases most important benefits from use of MGR are nonmonetary.
- Non-monetary benefits may include:
 - Scientific exchanges/training
 - Technology transfer
 - Capacity building (infrastructure)
 - Enhanced reputation
 - Increased number/quality of scientific publications
 - Biodiversity conservation
 - Valuable regional resources developed (knowledge, samples, data)
- Non-monetary benefits still cost money however they are upfront compared to royalties

Is a Public Domain/Open Access Approach Possible?

- Public domain/Open Access approach may be used when:
 - There is no desire/need to control access
 - There is more than enough of a resource for all to utilise
- Precedents in biology/software/semiconductors
- Low cost commensurate with size of problem

Public Domain Approach

- All should be able to benefit from discoveries
- This approach will lead to greater innovation, transparency and openness
- Access for landlocked & developing countries
- Make sure all can benefit and can exploit requires capacity building to ensure fairness

How to Facilitate MSR Whilst Allowing Commercialisation

MOPTALQIKPHFHVEIIEPKQVYLLGEQGNHALTGQLY
LSRLVEKGYLTEVAPELSLEVAAFWSELGIAPSVVAEG
VSDPKAPKAPKAGDSTAQLQVVLTDDYLQPELAAINKE
HCLAQRLEGNREVEASVLQQKRALQERNGGNKNGAVSC
NAIA
MOSTTLLQIKPHHHIEVIEPKQVYLLGEQGNHALTG
BOSS
YUNRLAEKGYLTEATPDLSPEVAAFWTELGIAPTVA
PVQNASDIGSSAALNIVUTDDYLQPELAAINKQALQ
HRE
RLEGNRE MQSTPLLQIQPHFHVEVIEPKQVYLLGEQANY
ROSV, TALFPTLIVLDRLAEKGYLTEAAPELSSEVAAFWSELGIA
RWSD
GCCEAVSILRGNREVEASVLQQKQAQQQRNGQSGSVISCL
PLAE
QAIDWTPIVFFPTLDGKIITFNHTVIDLKSHVLVRRPQCP
WYNRLSRITVQKYQHLVSPITGVVTSLVRLTDPANPLVHT
DPTIGILLCEAIERYSGIFQGDEPWKRATLAELGDLALH
TDVMTCVIAIDWTPWSLTEQKHKYVPTAFCTYGYPLPEE
NPMNIFF YNRIRRPAVDLSTFDEPYFVDLQQFYQQQNRE
PTIAILRALTEVSQVGLELDKIPDDKLDGESK
DVMNCVKTAQTAGLEVMVLDQTRPDIGLNVK

MGR samples and raw data

(19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 13 September 2007 (13.09.2007) WO 2007/103739 A2 Commercialisation (not just IP filing but use of IP) Basic research

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

Summary

Define extent of marine biodiversity relevant to bioprospecting Need definition of MGR – get input from marine scientists Need case studies of non-pharmaceutical products based on MGRs and their origins

Need to obtain realistic benefit scenarios

Propose light touch regime based on current good practice

Develop mechanisms to track developments based on MGRs

Propose common domain/open access model – needs capacity building/technology transfer to ensure fairness

Implementing agreement needs to be flexible to accommodate rapid progress in science

"The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013 under grant agreement n ° 312184)"