
The Construction of a Pun Generator

for Language Skills Development

Ruli Manurung∗

School of Informatics, University of Edinburgh,

Edinburgh, United Kingdom EH8 9LW

Graeme Ritchie

Computing Science, University of Aberdeen,

Aberdeen, United Kingdom AB24 3UE

Helen Pain

School of Informatics, University of Edinburgh

Edinburgh, United Kingdom EH8 9LW

Annalu Waller, Dave O’Mara, Rolf Black

School of Computing, University of Dundee

Dundee, United Kingdom, DD1 4HN

Running head: Construction of a Pun Generator

Correspondence address:

Dr Graeme Ritchie
Computing Science
University of Aberdeen
Aberdeen AB24 3UE
United Kingdom.

g.ritchie@abdn.ac.uk

∗Now at: Faculty of Computer Science, Universitas Indonesia, Depok 16424, Indonesia.

1



Abstract

Since the early 1990s, there have been a number of small-scale com-
puter programs which automatically constructed simple verbal jokes (puns),
but none of these were fully developed systems which could be used
for a practical application. We describe the building and testing of the
STANDUP program – a large-scale, robust, interactive, user-friendly pun-
generator (inspired by Binsted’s JAPE program) which is aimed at al-
lowing children, particularly those with communication disabilities, to
develop their linguistic skills. The STANDUP system was designed in
consultation with potential users and suitable experts, was rigorously en-
gineered using public domain linguistic data, and has a special-purpose
child-friendly graphical user interface. The software was tested success-
fully with real users (children with complex communication needs).

1 Introduction

Although the young field of computational humour has been growing slowly since
the early 1990s (see Section 4 below), most of the implementations have been
small, exploratory research prototypes, with no practical applications of the
ideas. We have developed a fully working joke-generation system (STANDUP –
System To Augment Non-speakers’ Dialogue Using Puns) which has been eval-
uated with real users and is freely available for use as an educational resource.
Its humour-creating behaviour reflects the current state of the art in compu-
tational humour, and it is well in advance of other humour programs in being
fully engineered to fulfil a practical purpose.

The central function of the software is to allow young children to explore
language (pronunciation, ambiguity, etc.) by creating their own punning rid-
dles through a simple interactive user-interface. A punning riddle is a simple
question-answer joke in which the answer makes a play on words, as in (1).

(1) What kind of tree is nauseated?
A sick-amore.

Such jokes rely on phonetic similarity and basic semantic relationships (such
as synonymy), which makes them computationally tractable and (potentially)
illustrative of linguistic patterns.

The intended users are children with complex communication needs (CCN)
such as impaired speech and limited motor skills (as often results from cerebral
palsy); these individuals often have lower levels of literacy than their typically-
developing counterparts of the same age (Smith 2005). The motivation for this
application is explained more fully elsewhere (O’Mara et al. 2000; O’Mara
et al. 2002; O’Mara and Waller 2003; O’Mara 2004; Waller 2006). In brief,
the children in the target user population are often unable to engage in the
normal forms of language play because of their disabilities. This can, in turn,
impede the development of skills in language, communication and social inter-
action (Lindsay and Dockrell 2000). The STANDUP software is intended as a

2



“language playground”, with which a child can explore sounds and meanings by
making up jokes, with computer assistance. The hope is that this will have a
beneficial effect on literacy and communication skills.

The core ideas for the joke-construction mechanisms are closely based on
those in the JAPE program (Binsted 1996; Binsted and Ritchie 1994; Binsted
and Ritchie 1997), but we had to invest considerable effort in transforming these
research concepts into a stable, usable, robust, user-friendly, interactive system
with acceptable output.

In this paper, we will describe what was involved in using the ideas at the
centre of the JAPE program as the basis for a fully practical system. This in-
cludes gathering user requirements, designing the user-interface, preparing data
resources, enhancing the joke-generation engine, and evaluating the software
with real users. Finally, we shall reflect on what this experience illustrates
about the development of computational humour applications from early re-
search prototypes.

2 Education, Exploration and Humour

There have been several decades of research into interactive software to assist
children in learning linguistic (or other) skills, and it is not feasible to review
that whole field here (see (Wenger 1987) for discussion of the earlier years). The
STANDUP project differs from much of that work in several ways:

• the software does not have some structured set of knowledge to be under-
stood, nor any representation of skills to be acquired;

• consequently, the software is not constrained by any specific educational
curriculum, and has few educational pre-requisites;

• if the child’s skills improve while using the software, that does not auto-
matically alter the possible interactions available with the software (al-
though a teacher or therapist can set more advanced options as the child
progresses);

• the software makes no attempt to assess the child’s skills at any stage.

• the only user-model is the profile of basic settings for a user, which the
STANDUP system does not alter.

While all this may suggest that STANDUP is a rather rudimentary system
from a pedagogic perspective, with any educational effects being indirect, it
emphasises that the system is primarily an environment which allows exploration
and play, rather than a structured learning framework. This is far from being a
new idea – using intelligent software to support a child’s exploration of ideas is at
the heart of the LOGO approach (Papert 1980), which has been around for over
thirty years. STANDUP is close in spirit to some other ‘learning through play’
systems, such as certain story-writing software (Machado et al. 2001; Gjedde

3



2004; Gjedde 2006; Robertson and Oberlander 2002; Robertson and Good 2003),
although some of these have a certain amount of pedagogic structuring (e.g.
(Robertson and Cross 2004)).

Although Yuill’s humour-based experiments (Yuill 1996; Yuill 1998) use joke
material (predominantly riddles) with children, the items are carefully designed
(not computer generated) and are used within a structured regime of training
and testing. Interestingly, Yuill shows that understanding of simple riddles does
relate to broader linguistic skills.

3 Augmented and Alternative Communication

Voice output communication aids (VOCAs) generally allow the users with lim-
ited literacy skills to retrieve prestored linguistic items (e.g. sentences, phrases,
words) using picture keyboards or dynamic touch screens. Switch access is used
by individuals who are unable to use a keyboard or touch screen. Items selected
are “spoken” using a speech synthesiser. Software and hardware for chidren with
complex communication needs have generally emphasised transactional aspects
of communication, i.e. needs-based communication – making requests and giv-
ing short responses. The focus has been on making it easier and more efficient
for the user to indicate their needs and express their emotions. Engaging in free
narrative and topic-based conversation is more difficult, and some of our past
work has considered the need for story-telling within computer-assisted conver-
sations, and the effect of providing this to users of communication aids (Waller
and O’Mara 2003; Waller 2006). The playful aspect of language use has not
been considered to any great extent, although some clinicians (Musselwhite and
Burkhart 2002; King-DeBaun 1997) have reported on the use of verbal humour
as a support for communication skills such as turn-taking.

The STANDUP system is not intended as a communication aid: it is a
standalone system for language exploration. However, as noted in Section 9.1
below, it proved to be usable as a specialised tool for telling computer-generated
jokes (and could in the future be combined in some way with a VOCA).

4 Computational Humour

To get a general overview of work in computational humour during the first ten
years of the field, see (Ritchie 2001), (Hulstijn and Nijholt 1996), (Stock et al.
2002). The area is still in its infancy. There are no real theories of humour to
guide computational work, so projects tend to be narrowly defined, on a small
scale, using mechanisms designed for specific tasks, and generally exploratory.

The STANDUP project has taken one of the dominant strands of the past
work – pun generation – and successfully subjected it to thorough and sub-
stantial engineering effort. Also, even those humour-generating programs which
have been evaluated were not tested as actual working systems with real users,
whereas the STANDUP trials (Section 10) placed the software in a real setting

4



with typical users.
For our purposes, we can review past work under two headings: small pun

generators, and other systems; JAPE will be dealt with separately in Section 4.3.

4.1 Early pun generators

Since 1992, a number of computer programs have been built which construct
simple (usually novel) verbal jokes. These were generally very small studies,
often carried out as student projects.

(Lessard and Levison 1992) built a program which, using an existing natural
language generator, VINCI (Levison and Lessard 1992), created a simple variety
of pun, the Tom Swifty. (Lessard and Levison 1993) sketch the workings of a
program which, again using the VINCI generator, produces some basic forms of
punning riddle. (Venour 1999) built a small program which could generate sim-
ple texts consisting of a one-sentence set-up and a punning punchline consisting
of a head noun preceded by an adjective or a noun modifier. The WISCRAIC
program (McKay 2000; McKay 2002) could produce simple puns in three differ-
ent linguistic forms (question-answer, single sentence, two-sentence sequence).

These systems operated with quite small amounts of hand-crafted data, and
were not given much serious testing. The Lessard and Levison projects report
no performance or evaluation, while Venour and Mackay report very small and
not very systematic evaluations. (See (Ritchie 2004, Chap. 10) for a fuller review
of these systems.)

4.2 Other types of system

As the STANDUP program is a punning riddle generator, JAPE and the systems
reviewed in Section 4.1 are its antecedents. Other work in computational hu-
mour has included a program which could construct amusing acronyms (Stock
and Strapparava 2002; Stock and Strapparava 2003; Stock and Strapparava
2005), a recogniser for basic “knock-knock” jokes (Taylor and Mazlack 2004),
and some studies of how machine-learning techniques could separate joke texts
from non-jokes (Mihalcea and Strapparava 2006; Mihalcea and Pulman 2007).
Binsted and Bergen have been involved with a number of small prototypes: a
very preliminary generator for insults based on scalar humour (Binsted et al.
2003), and a program which selects punchlines for a joke set-up for a particular
class of jokes (Stark et al. 2005).

Although some of these were on a slightly larger scale than the pun genera-
tors in Section 4.1 above, all of them were research prototypes, with no claims
to be usable applications.

4.3 The JAPE riddle generator

The JAPE program (Binsted and Ritchie 1994; Binsted and Ritchie 1997; Bin-
sted 1996) (devised completely independently of the similar and roughly simul-

5



taneous work by Lessard and Levison, Section 4.1) generated certain classes of
punning riddles. Some of the better examples were the following.

(2) How is a nice girl like a sugary bird?
Each is a sweet chick.

(3) What is the difference between leaves and a car? One you brush and rake,
the other you rush and brake

(4) What is the difference between a pretty glove and a silent cat? One is a
cute mitten, the other is a mute kitten.

(5) What do you call a strange market? A bizarre bazaar.

The mechanisms used in JAPE (see (Ritchie 2003) for full technical details)
are very similar to those in the STANDUP program, which are described in
more detail in Section 6 below: three types of rules (schemas, description rules,
templates) manipulated words and phrases from a large dictionary.

The two aspects of JAPE which make it stand out from the other early pun-
generators is that it used a large, general-purpose lexicon, WordNet (Miller et al.
1990; Fellbaum 1998), rather than a small hand-crafted one, and that a properly
controlled evaluation of the output was carried out (Binsted et al. 1997). The
latter study showed that JAPE-generated jokes were reliably distinguished from
non-jokes, human-generated jokes were more often deemed to be jokes than
JAPE-generated jokes, JAPE-generated jokes were funnier than non-jokes, and
human-generated jokes were funnier than JAPE-generated jokes. However, the
joke rated the funniest in the data set was a JAPE creation ((3) above).

As well as developing the mechanisms for punning riddle generation, Bin-
sted suggested, in passing, the idea of using such a program for interactive
language teaching. However, the JAPE implementation (or any of its subse-
quent enhanced versions (Griffiths 2000; Ritchie 2003)) was still just a research
prototype, and there were certain aspects which would have to be altered or re-
built if it was to be used for practical purposes. These limitations were roughly
in the areas of usability and output quality. To be more precise:

1. The only behaviour of the program was to create riddles, one after an-
other, with very few parameters available for variation. Moreover, these
parameters were internal to the mechanism (e.g. choice of a particular
schema) and might not make sense to an ordinary user.

2. The program worked by exhaustively searching for words and phrases
which would match its schemas and templates. There was no way to
guide the software (e.g. to use a particular word, or to make a joke on a
particular topic).

3. There was no real user interface – the user (always a knowledgeable re-
searcher) would invoke the program from a simple command interface.

6



4. The search for suitable words, being unintelligent and exhaustive, could
(if the lexicon was suitably large) be very slow; Binsted’s test runs took
hours. This meant that the response time for joke production was very
far from usable for interaction with a user.

5. The jokes were of very variable quality, with the proportion of intelligible
jokes being quite small; the proportion of good intelligible jokes was very
small.

6. Facilities for comparing words for similarity of sound were quite primi-
tive. In particular, there was no provision for approximate matches (near-
homonymy) and correspondences between written and phonetic forms of
words were slightly ad hoc.

We endeavoured to address these deficiencies in our design and implemen-
tation of the STANDUP system.

5 The user interface

The deficiencies 1, 2 and 3 (Section 4.3 above) were addressed by creating a
flexible user interface.

5.1 Determining requirements

Designing the user interface consisted of two questions: what functionality
should be available to the user, and how should these functions be presented and
controlled? To answer both of these, we conducted a number of requirements-
gathering exercises, with some “expert” users (i.e. adults with complex com-
munication needs (CCN)) and with a number of domain experts (teachers and
therapists familiar with issues in augmentative and alternative communication
(AAC)). This involved focus groups and semi-structured questionnaires to elicit
and develop ideas about what an interactive joke-building system should provide
for children with CCN. Paper prototypes of screens were devised, and feedback
was gathered on these.

Fuller details of the requirements-gathering stage are given elsewhere (Waller
et al. 2005).

5.2 Initial steps

Based on the findings described in Section 5.1, we developed a semi-formal
specification of the possible user interactions with the system, in the form of a
use cases document (Cockburn 2000). On the basis of this, a software mock-up
was created, in which there was no joke-generator, just a small set of (human-
generated) punning riddles, but where the user’s access to the jokes was through
a prototype of the interactive interface. This mock-up was tested for general
usability with three potential users, all with cerebral palsy (typical of the type

7



of disability the project was focussing on). Some minor changes were needed to
the user interface, but no significant problems were found in these trials, so we
proceeded to implement a full system.

5.3 The appearance of the interface

The user interface offers the user, at any stage, a relatively small number of
choices, each represented as a large button (depicted as clouds against a sky).
As well as the various choice buttons (which include general navigational ones
such as Exit, as well as the central choices relevant to the joke building task),
there is a progress map, which is a rough pictorial indication of how far through
the joke-building process the user is (see Figure 1).

The overall appearance of the interface was created by a professional graphic
designer, who also provided specialised icons and a cartoon character (a jester-
robot) to act as the persona of the system. Feedback on the icons and jester
robot from several children helped to choose the final designs. The general style
is colourful and lively.

There are a wide range of options (specific to the current user) which can
be set via a control panel (invoked by an escape key). For example, the user
interface can be set for use with a conventional mouse, with a touchscreen, or
via a single-switch; selecting the latter invokes a scanning regime, a technique
used in assistive technology, by which options are highlighted and chosen when
the switch is activated. The user’s menus for word-choice are modified automat-
ically depending on whether a text input device is available. Speech output can
be switched on selectively for different types of text, such as system prompts or
jokes when displayed. The presence of pictorial symbols accompanying words
can be turned on or off, and there are further options to fine-tune how informa-
tion is to be displayed and which joke-construction resources are to be used.

This control panel is not intended for the actual end user, who might have
difficulty in grasping some of the more technical options, or with selecting op-
tions using a mouse (the control panel is not within the flexible AAC-oriented
user interface); instead, this facility is aimed at the researcher, teacher, thera-
pist, or carer, who can modify the behaviour of the STANDUP software to suit
a particular child or group of children.

6 The joke generator

Riddle generation in STANDUP consists of the same three stages as in JAPE.
Each stage consists of instantiating a particular kind of rule: schemas (Sec-
tion 6.1), description rules (Section 6.2), and templates (Section 6.3).

6.1 Schemas

A schema consists of 5 parts:

8



Header: As well as attaching a symbolic name to the schema, this lists the
schema’s variables, which can be thought of as its parameters.

Lexical preconditions: This is the heart of the schema, containing a collec-
tion of constraints which specify the core data items needed for a particular
subclass of riddle. The types of core items involved are lexemes (entries
from the STANDUP lexicon) and word forms (the orthographic textual
representation of a particular word). The constraints can involve syntactic
categorisation (e.g. that a lexeme is a noun), phonetic relations (e.g. that
two items rhyme), structural relations (e.g. that an item X is a compound
noun made up of components Y and Z), and semantic relations (e.g. that
one lexeme is a hypernym of another).

Question specification: This specifies how certain variables in the schema
are, once instantiated, to be described within the question part of the
eventual riddle. This, and the answer specification, supply the input to
the processing of description rules (Section 6.2 below).

Answer specification: This specifies how certain variables in the schema are,
once instantiated, to be described within the answer part of the eventual
riddle.

Keywords: This lists the subset of the schema’s variables which will be bound
to lexemes. It is used to define a notion of equivalent between similar
riddles: two riddles are deemed equivalent if they use the same schema
with the same instantiation of the keyword variables. The generator tracks
which instantiations have been used so far with a particular user, and does
not offer these (or equivalent) jokes again to the same user.

Informally, the schema’s variables can be instantiated with values from the
lexical database, providing they meet the constraints in the lexical preconditions.

STANDUP uses 11 schemas (for 11 underlying kinds of joke). A typical
schema is shown here:

Header: newelan2(NP, A, B, HomB)

Lexical preconditions:

nouncompound(NP,A,B), homophone(B,HomB), noun(HomB)

Question specification: {shareproperties(NP, HomB)}

Answer specification: {phrase(A,HomB)}

Keywords: [NP, HomB]

Following the practice of the JAPE system, relations and properties are ex-
pressed here in Prolog-style (logic-like) notation, with predicates applied to ar-
guments. Although each schema was designed using this notation, in the actual
implementation the lexical preconditions were hand-compiled into an expression
in the database query language SQL (Elmasri and Navathe 2000), to facilitate
the finding of suitable variable values within the lexical database (Section 7 be-
low). This coding as SQL could in principle have been automated, but it was

9



not worth investing time in devising a schema-compiler, given the small number
of schemas involved.

The newelan2 schema given above could have an instantiation in which
NP= computer screen, A = computer, B = screen, and HomB = scream (the
relation homophone means that the two items lie within the current threshold
for phonetic similarity; i.e. “homophones” can be approximate). This could
give rise (after the two further phases of processing) to a riddle such as (6):

(6) What do you call a shout with a window?
A computer scream.

Instantiating a schema assigns values to schema-variables. Some of these values
have to be passed on to the next phase of joke generation, and these are indicated
in further components of the schema, the question specification and the answer
specification. These specifications embed the relevant variables within symbolic
expressions which act as signals to the next phase (Section 6.2 below) about what
is to be done with these values. In this example, the question specification would
be shareproperties(computer screen, scream) and the answer specification
would be phrase(computer, scream).

6.2 Constructing descriptions

The middle phase of joke generation – constructing descriptions – was originally
introduced in JAPE-2 (Binsted et al. 1997), having not been present in JAPE-1
(Binsted and Ritchie 1994; Binsted and Ritchie 1997). The rationale for this
stage is to encode certain linguistic variations which may be possible, given
particular core values from the schema instantiation.

The question specification and answer specification are handled separately.
Each of these expressions is matched non-deterministically against a set of de-
scription rules. These rules have a structure roughly similar to schemas, in that
they have a header, some preconditions, and an output expression, the template
specifier. For example, one description rule is:

Header: shareproperties(X,Y)

Preconditions: meronym(X, MerX), synonym(Y, SynY)

Template specifier: [merHyp, MerX, SynY]

In the example joke given above for the newelan2 schema, the question
specification shareproperties(computer screen, scream) would match the
header for this rule. This matching causes the data values (computer screen,

scream) to be bound to the local variables X,Y of the rule, ready for the pre-
conditions of the rule to be tested. These preconditions check further lexical
properties and relations, to determine whether this rule is actually applicable in
this case. (As with schema preconditions, the implementation represents these
expressions in SQL, to facilitate searching of the lexical database.) This may
involve testing for the existence of further values (e.g. values for MerX, SynY in
the example above), thereby resulting in the binding of more variables (local to

10



the rule). For example, starting from X = computer screen and Y = scream, the
precondition testing might find (in the lexicon) variable values MerX= window
and SynY= shout, thereby satisfying all the conjuncts of the precondition. If
the precondition testing succeeds, the template specifier is instantiated (using
whatever variable values are now current), and these expressions are passed on
to the third stage of joke generation, template filling. In the example here, this
expression would be [merSyn, window, shout]).

The answer specification phrase(computer, scream) matches a very ba-
sic description rule which passes both values on in an expression [simple,

computer, scream]; this will eventually be interpreted (at the template phase,
below) as a concatenation command.

However, the same schema instantiation could have led, if other values were
found for MerX and SynY in the description rule used for the question, to a
slightly different variant, such as (7).

(7) What do you call a cry that has pixels?
A computer scream.

Or if a different description rule had been chosen for the question specification,
the joke might have been (8).

(8) What do you get when you cross a shout with a display?
A computer scream.

Here, the central idea of the joke (captured by the schema instantiation) is
essentially the same in all three versions.

In STANDUP (as in JAPE), there are two distinct mechanisms used to
achieve textual variation. The variation illustrated above involves slightly dif-
ferent phrases which originate from the same semantic material expanded and
realised in varying ways. These are constructed by this middle phase, which is
a non-humorous set of linguistic rules about how to build descriptive phrases.
(These variations generally occur in the riddle’s question, but the data for the
answer is also passed through this middle stage, so as to have a cleaner architec-
ture, and also to allow for possible minor adjustments which might be needed
in the linguistic form of the answer data, which does occur when using the two
schemas in which one word is substituted for a part of another.)

On the other hand, different stereotyped joke-framing phrases, such as What
do you get when you cross or What is the difference between are handled
by the third phase (Section 6.3) below.

6.3 Surface templates

A template is, loosely speaking, a fixed string of text with some blank slots
available for other textual material to be inserted. Building text by filling
data (e.g. phrases) into a template is a long-standing and much used approach
to the generation of simple natural language text (Reiter and Dale 2000). It
lacks linguistic subtlety and can be inflexible, but it is very convenient when a

11



particular application (as here) needs to build a few stereotyped forms of text
which vary only in a few well-defined places. There are three types of template in
STANDUP: phrasal, question and answer. Phrasal templates put the finishing
touches to phrases built by the previous stage (description construction), for
example inserting articles or prepositions as needed. A question template has
the broad outline of a riddle question (e.g. What do you call a ? with slots
for phrases to be inserted, and an answer template has the broad structure of a
riddle answer (e.g. They’re both ) with slots for phrases to be inserted.

A template has two parts: the header and the body. The expressions provided
by the description rules, such as [merSyn, window, shout] and [simple,

computer, scream] are non-deterministically matched against the appropriate
(question or answer) templates. This causes variables in the template header to
be instantiated to the values (such as window, shout). These values are thereby
passed into the body, which is a skeletal textual structure, such as What do

you call a NP(X,Y). Recursively, the template handler matches NP(shout,

window) to a set of phrase templates, one of which yields NP(shout) with a
NP(window), and a further template match produces a shout with a window.
The answer is also produced by the template module, but for an expression like
[simple, computer, scream] there are no recursive calls – a single phrasal
template produces a computer scream.

There are various restrictions about which question templates are compatible
with which answer templates, and also which templates are viable for the values
coming from a particular schema. These combinations are coded up in a table;
these are known as the joke types, as we found it useful to characterise types of
joke in terms of underlying rule combinations.

7 The lexicon

The JAPE lexicon consisted of the standard WordNet lexical database (Miller
et al. 1990; Fellbaum 1998), together with a small number of auxiliary knowl-
edge bases: an explicit list of homophones based on Evan Antworth’s online ver-
sion of (Townsend 1975); the British English Example Pronunciation (BEEP)
dictionary; some hand-crafted rules for estimating which portions of two words
corresponded phonetically when they were similar orthographically; a total of
about 1000 typical verb-subject pairings and typical verb-object pairings, indi-
cating which nouns were suitable subjects or objects for some verbs, created by
hand from a children’s dictionary; the MRC Psycholinguistic Database (Colt-
heart 1981), for rating the readability of jokes.

The auxiliary knowledge bases had, from our point of view, a number of
problems. There was inconsistency in the phonetic relations represented, some
being based on US English and some on British English. Although BEEP
contains about 100,000 entries, the resources were all smaller than WordNet (to
varying degrees) and in most cases were constructed in ways which were hard
to scale up.

As a result of our consultations with users and experts, and consideration

12



of the needs of the joke generator, we concluded that it would be highly desir-
able (in some cases essential) for our system to have, in addition to the exist-
ing WordNet provisions of part of speech, noun compounds, multiple senses for
words, synonym sets, hyponym and meronym links, a number of other facilities.

We therefore started from WordNet, but added various resources, as follows.

7.1 Phonetic similarity

It was essential to be able to compare words and parts of words for phonetic
similarity and identity in a uniform manner, preferably on the basis of an English
accent which would be compatible with our intended users’ intuitions. JAPE
compared words for homophony in a rather ad hoc way, and had no mechanism
for approximate matching (to allow, for example, road to pun with rude).

The Unisyn dictionary (http://www.cstr.ed.ac.uk/projects/unisyn) was
used to assign pronunciations to the words in the WordNet lexicon. That is, each
lexical entry was allocated a string in the phonetic alphabet used by Unisyn. It
was important that the assignments of phonetic form to words were sensitive
to the sense of a word, in order that puns were internally consistent. For ex-
ample, if the program is making a pun which relies (semantically) on the word
bass meaning singer (rather than fish), then it should not, in the same joke,
assume that bass is pronounced as in the fish sense. For a small number of
word senses, there was ambiguity about the correct pronunciation of a word
(e.g. bass). These were disambiguated by hand.

These phonetic strings were used by the punning mechanisms to deter-
mine phonetic similarity, using a least-edit-cost algorithm (Jurafsky and Martin
2000). (See (Manurung et al. forthcoming) for fuller details.)

7.2 Speech Output

As our users might have limited literacy, it was essential to have speech output.
The facility to pronounce words and phrases was provided by the FreeTTS
text-to-speech system (http://freetts.sourceforge.net/docs/index.php),
a program which processes (orthographic) texts produced by the joke generator
or the user interface. That is, this requirement was not met by encoding data
in the lexicon. (Ideally, the accent used by the speech output should be similar
to that assumed for phonetic matching, for consistency. We were not in a
position to enforce that, but the generality of our approach should make it
straightforward to achieve in a future version, subject to processing power and
available voice files.)

7.3 Picture support

A further highly desirable support for limited literacy users is that, when dis-
playing a lexical item, a pictorial symbol should, if possible, accompany it,
preferably from a standard symbol-library used in AAC. We considered various
sources of word-to-picture mappings, such as children’s illustrated dictionaries.

13



The main problem with these (leaving aside availability in machine-readable
form, or licensing of proprietary material) was that they linked pictures to word-
forms (strings of letters) not to word-senses (meanings). For STANDUP, the
intended use of the symbols was to assist the users in understanding the mean-
ing of words, so it was crucial that where a word-form could have more than one
meaning, the appropriate picture would be displayed for the sense intended in
context. For example, the word match could mean a sporting event or an item
for producing a flame, and different pictures are needed for these two senses.

Two widely-used proprietary libraries of pictorial symbols used in AAC de-
vices (i.e. communication aids) are the Widgit Rebus set (by Widgit Software
Ltd) and the Picture Communication Symbols (PCS) (by Mayer-Johnson LLC).
Both these companies kindly agreed to let us use their symbol sets within our
software for the duration of our research, including our trials with users.∗ Al-
though Widgit Software supplied data linking each of their pictorial symbols
to one or more conceptcodes (abstract identifiers for semantic concepts) and
also to one or more English words, there was still the need to link the pictures
to the word senses used within our lexicon, for the reason explained earlier.
In the absence of any way of automating this, we manually linked the Widgit
conceptcodes to WordNet concepts. The resulting mapping between concept-
codes and WordNet identifiers means that there is a subset (about 9000) of our
WordNet-derived senses which have associated pictorial symbols. As Widgit
Software had already linked their own conceptcodes to PCS symbols as well,
our mapping connected our WordNet senses to both Widgit Rebus and PCS
libraries.

7.4 Topics

Our experts suggested that word-senses should be grouped into subject-areas
(topics) to facilitate access by the user; for example, so that they could build
jokes on “sport” or about “food”. Also, these topics should be structured,
probably into a hierarchy.

Although WordNet has a hypernym hierarchy, it is unsuitable for our pur-
pose, being an abstract ontology rather than a classification of a child’s everyday
world into recognisable categories. However, the Widgit conceptcodes had been
clustered, by Widgit Software Ltd, into more recognisable topics, which are hi-
erarchically grouped. Hence, once the WordNet senses were linked to Widgit
conceptcodes, this automatically connected them to the Widgit topic sets. It
was convenient for us to adopt this topic hierarchy (which may be familiar to
users who have encountered Widgit AAC products).

∗For contractual reasons, in released versions of our software after the project period, the
use of PCS symbols is limited to messages from the system, without coverage of words in
jokes.

14



7.5 Familiarity of words

It is essential to be able to restrict the available vocabulary to words which the
intended users (young children, perhaps with poor literacy) are likely to know,
as there will be no beneficial effect, and probably some demoralisation, if the
software produces riddles with words which are totally incomprehensible. JAPE
was liable to produce riddles using extremely obscure words, such as (9).

(9) What do you get when you cross a vitellus and a saddlery?
A yolk yoke.

We were faced with three problems in creating a “familiarity score” for the
entries in our lexicon. The first was the disambiguation problem: most avail-
able resources assigned ratings (e.g. corpus frequencies) to word-forms, not to
word-senses. As in the case of pronunciation (Section 7.1) and pictorial im-
ages (Section 7.3), it was essential that the data be linked to word-senses. For
example, the WordNet senses for the word argument include ‘a discussion in
which reasons are advanced for and against some proposition or proposal’ and
also ‘a variable in a logical or mathematical expression whose value determines
the dependent variable’. These may have quite different levels of familiarity to
young children.

A second problem was the sparseness of data: most available sources covered
only a few thousand words. Thirdly, the information in existing resources might
be unreliable or unsuitable for our purposes.

WordNet has corpus-frequency data for every entry, based on the SemCor
sense-annotated corpus (Miller et al. 1993), and this would seem at first to be
ideal. However, we found that it was not very suitable for our target user group:
some very simple everyday words (e.g. baker, onion, sleepy) scored 0 (i.e. did not
appear in the corpus), many others (e.g. milk, nail) appeared only rarely. On
the other hand, some more obscure terms (e.g. vocational, polynomial) had quite
high frequencies. This was, however, the only sense-disambiguated resource we
had – all others failed on both the sparseness and ambiguity factors.

To address this, we applied a hybrid strategy. The set of word-senses which
have associated pictures in either the PCS or Widgit Rebus symbol libraries
(after our hand-disambiguation – Section 7.3) were assumed to be moderately
familiar. We took all the word-forms which appeared in a published set of
graded words for testing children’s spelling (Schonell 2003) and manually at-
tached WordNet senses to them, using our own judgement as to the most suit-
able (and omitting those where WordNet supplied no candidate senses). This
gave us two small, but relatively reliable, hand-disambiguated lists. We used
these to assign senses to word-forms appearing in other, more principled lists,
particular some of the rated lists in the MRC psycholinguistic lexical database
(Coltheart 1981).

Finally, we assigned (again intuitively) a priority ordering to these sources,
and a numerical range to each source. The FAM-score for a word-sense was then
whatever was assigned by the highest priority source in which that word-sense

15



appeared, with the value being computed from that source’s numerical range
and whatever rating the source itself assigned.

The STANDUP joke generator has an (adjustable) filter on the FAM-score
of the lexemes used. This can be used to limit the unfamiliarity of words used.

7.6 Vocabulary restriction

It must be possible to avoid the use of words which are highly unsuitable for the
user population (e.g. swear words, sexual terminology). JAPE was quite capable
of producing jokes which, while semantically valid, were socially unacceptable
for our target audience; for example, (10).

(10) What do you call a capable seed?
An able semen.

We introduced a blacklist which contains words that must not be used any-
where by the system. It was populated by searching the Shorter Oxford English
Dictionary for all entries tagged as either coarse slang or racially offensive; a
few further entries were added to this list by the project members based on
personal knowledge of words likely to be deemed unsuitable by teachers.†

As a result of all the above resource development, we had a lexicon with
heterogeneous information, derived from a number of sources. It was highly
desirable to integrate the various knowledge into a uniform lexical database,
to facilitate systematic access. We therefore created a relational database, so
that all the relevant properties and links (e.g. lexeme to word-form, hyponym
to hypernym, word-sense to FAM-score) were represented as relations between
columns in these tables. In this way, a standard SQL query could be used to
extract all items or sequences of items which met an arbitrary combination of
conditions (as required for instantiating schemas and description rules – Sec-
tion 6).

Further details of the lexicon can be found elsewhere (Manurung et al. 2006;
Manurung et al. 2006; Manurung et al. forthcoming).

8 Improving joke quality

It was fairly clear from the JAPE project that although the riddle generator did
indeed produce structurally correct texts, some of them were being very far from
acceptable as jokes. If we leave aside the fundamental limitation that we had no
theory of humour to guide the joke generator (not something that could be easily
remedied in a single project), it appeared, from inspecting the output of JAPE
(and of early versions of STANDUP), that there were a number of very different,
and often quite trivial, factors undermining the system’s efforts at humour. To
tackle this, we implemented various heterogeneous improvements. On the whole,
these could be classed as inserting formal checks to eliminate configurations of

†Despite this, one teacher objected to a STANDUP riddle built from quite innocent lex-
emes: What do you call a queer rabbit? A funny bunny.

16



lexemes which would lead to (intuitively speaking) poorer output; that is, we
did not so much positively improve the jokes as selectively close off some of the
noticeably poorer (and formally definable) routes to weak jokes.

Avoiding shared roots. Early versions of STANDUP produced riddles in which
the same word (or two morphological variants of a word) appeared both
in the question and in the answer, which tended to spoil the joke: What
do you get when you cross a school principal with a rule? A principal
principle. Although WordNet has no notion of a word’s root, the Unisyn
dictionary which we used to allocate phonetic representations did have
this information, so we were able to associate a ‘root’ field with lexemes
in our dictionary, and have a check that filtered out riddles in which the
same root appeared in question and in answer.

Excessive abstraction. As the lexicon used the WordNet hyponym/hypernym
hierarchy, many words were ultimately linked to very abstract entries such
as entity or human activity. This could cause riddles to be excessively ob-
scure; for example: What do you get when you cross an aristocracy with a
quality? A nobility mobility. Here, quality is a hypernym of mobility, but
this gives an excessively imprecise question. We therefore placed some of
the roots of the hypernym forest in a further list of lexemes to be excluded
from use. This was done by subjective judgement of the degree of abstrac-
tion, rather than by considering actual jokes which included the concepts.
Although this removed many baffling riddles, the phenomenon of unwork-
able abstraction is more subtle. Consider the rather poor STANDUP
example (11).

(11) What do you call a cross between a coach and a trained worker?
A double baker.

The pun is presumably on double decker (a two-level bus), but that is not
the point of interest here. The phrase trained worker is a hypernym of
baker, and so is found by a description rule seeking hypernyms. But trained
worker, although not as wildly abstract as entity or quality, is still too
vague to invoke the specific notion of baker. A hypernym should be used in
a riddle question like this only if it is close enough in meaning to the target
item (here, baker). Since it is hard to specify an appropriate criterion of
“closeness”, an alternative solution would be to remove the description
rules which rely on hypernyms; unfortunately, this would remove half of
the description rules used for questions.

9 Other facilities

9.1 Joke telling

Part of the motivation for this work came from the idea that a child who used
a voice-output communication aid (VOCA) – i.e. using a speech synthesiser

17



in order to “speak” – might like to incorporate jokes into their conversation.
However, it would have been over-ambitious to attempt to incorporate the
STANDUP functionality into a VOCA at this stage of development, so we in-
stead developed STANDUP as a stand-alone system which a child could exper-
iment with. As noted earlier, STANDUP had a built-in text-to-speech system
for reading messages, button labels, etc. to the user. At a relatively late stage
in the design, we incorporated a facility whereby the user could, having ob-
tained a joke, “tell” it step-by-step (question, pause, answer) by having the text
spoken by the software, with the user controlling this process by the pointing
device. This proved to be highly popular with the users (Section 10 below), as
the children could tell their STANDUP jokes immediately without having to
switch over to their VOCA and enter the text.

9.2 User profiles

Each user of the STANDUP system chooses a username (entered via the key-
board by the researcher/teacher), and the system thereafter maintains infor-
mation about that user. This includes two kinds of data: option settings (e.g.
what kind of input device is to be used, which classes of text are to be spoken
by the software, what level of word familiarity is to be used), and personal data
(which jokes that user has already been shown, and that user’s ‘Favourites’ list.)
The STANDUP control panel allows option settings to be altered at any time
during a session, and values are retained between sessions.

In order that the various parameters can be set up easily for new users, option
settings can be exported to and imported from disc files. Hence, some standard
packages such as beginner, or highly-literate-touchscreen-user can be saved in
these files, and either explicitly imported at the start of a STANDUP session,
or set to be the default profile for new users. To assist with this, there is a simple
options authoring tool, separate from the STANDUP system, which mimicks the
STANDUP control panel but with the added facility of saving/restoring option
files.

9.3 Logging

Optionally, the user’s interactions with the STANDUP system can be logged
(in a basic XML-based notation) in a disc file. This allows researchers to study
usage as required. To assist in such analysis, there is a STANDUP log player
which drives the STANDUP user interface (without the joke generator) through
the steps listed in the log, thereby showing on the screen what would have been
appearing during the session.

We also used standard software to dump the simulated re-runs into a video
file, so that when analysing the sessions, our researchers could load the video
data into any standard video-playing software and have all the benefits of fast-
forward, rewind, pause, etc.

18



10 Evaluating the system

Although one of the notable aspects of the JAPE project was its thorough
evaluation (Binsted et al. 1997), that trial tested only the quality of the output.
For STANDUP, we were interested in evaluating the effectiveness of the software
for its particular application. It was not feasible, within the timescale of the
project, to carry out a proper longitudinal study of the effects of long-term use of
STANDUP on a child’s linguistic or communicative skills. However, we wanted
to at least determine that the STANDUP software was usable by the target user
group, and that it was potentially beneficial. As well as one or two small pilot
studies, we carried out a substantial evaluation with a group of children with
CCN (see (Black et al. 2007) for fuller details).

Nine pupils at Capability Scotland’s Corseford School‡ participated in a
trial using a single case-study methodology. The children, all with cerebral
palsy, ranged from 8 years 4 months to 12 years 9 months, and had literacy
levels rated as either emerging or assisted. Eight of the participants were users
of various communication aids (e.g. Dynavox DV4), and could interact with
these via touch screens or, in four cases, head switches.

Over a period of ten weeks, there were five phases: baseline testing, intro-
ductory training, intervention, evaluation, post-testing. In the baseline testing,
two standard multiple-choice tests for facility with words were administered:
Clinical Evaluation of Language Fundamentals, CELF, (Semel et al. 1995), in
which 27 questions each ask for a choice of 2 semantically related words from a
set of 4, and a rhyme-awareness test from the Preschool and Primary Inventory
of Phonological Awareness, PIPA (Frederickson et al. 1997). We also adminis-
tered a locally developed assessment of a child’s grasp of punning riddles, the
Keyword Manipulation Task (O’Mara 2004). The introductory training stage
allowed the children to familiarise themselves with the system with the help
of one of the project’s researchers. In the intervention phase, the researcher
suggested simple tasks that the children could try with the software (such as
finding a joke on a particular topic), and offered guidance as necessary. (It
had become clear during the training phase that it was not feasible to have
a rigid schedule of tasks the completion of which could be measured – it was
unrealistic to attempt to override a child’s own desires and inclinations.) For
the evaluation phase, tasks were again suggested, but no help was given unless
absolutely essential. All of the sessions were video-taped for later analysis, and
STANDUP’s own logging system recorded all user-interactions into a disk file.
Afterwards, follow-up interviews and questionnaires were used to get feedback
from school staff and from the participants’ parents.

All but one of the children reacted very positively to their time with the
software – one of the older boys, who had good verbal abilities, complained about
the quality of the jokes, but provided insightful feedback on how the system
might be improved. Pupils spontaneously used the software (without need for
prompting), took pleasure in having the software tell the jokes to others, and

‡http://schools.capability-scotland.org.uk/.

19



re-told the jokes afterwards to parents and others. The STANDUP-generated
jokes became part of an existing class project, with pupils posting their favourite
examples publicly.

Although this was a very small qualitative study, with no ambitions to show
skill improvements over such a short term, it is interesting to note that there
was anecdotal evidence (from parents and teachers) that children’s attitude to
communication had improved. The parents of one child had previously not
wished their child to use a VOCA, as they were concerned that it might prevent
the child from developing natural speech. However, on seeing the enlivening
effect on their child of being able to tell jokes using the STANDUP software,
they changed their decision.

The post-testing with PIPA (testing awareness of rhyme) showed no signs of
improvement (although 6 of the 9 scored above 80% on both pre- and post-test,
suggesting a possible ceiling effect). On the CELF post-test, all the participants
improved except the pupil who complained about the jokes; the mean improve-
ment was 4.1 (out of 27).§ It is difficult to conduct randomised controlled trials
in the AAC field as the set of people who use AAC tends to be heterogeneous.
In the absence of any comparison with a control group, it is hard to infer much
from the scores.

Since it was unclear at the outset of the STANDUP project whether children
with CCN would even be able to use the planned software, the level of positive
reaction came as a considerable – and welcome – surprise.

11 Discussion

11.1 The outcome

By the end of the project, we had succeeded in our aim of translating the research
prototype ideas of JAPE into a fully working, large-scale, robust, interactive,
user-friendly riddle generator, with a number of auxiliary facilities such as speech
output and adjustable user profiles. The software has been used not only in our
evaluations, but was used by participants (teachers and therapists) at a two-
day workshop on Language Play and Computers (August 2006) and has been
made available to a number of other researchers on a trial basis. The software
is available free of charge, and can be downloaded from the STANDUP website,
http://www.csd.abdn.ac.uk/research/standup.

What was clear from this project was the considerable amount of work re-
quired to achieve this transformation. The JAPE system was a better start-
ing point than many programs produced during doctoral work, as it was well
documented, had an explicit (and accurate) abstract model (as distinct from
merely being source code) and had already been explored in a couple of student
projects (Griffiths 2000; Low 2003). Also, the two original supervisors of the

§It is probably not appropriate to apply serious statistical analysis to data from such a
preliminary exploratory study, but, for those who are interested, applying the paired t-test,
two-tailed, to the CELF scores yields t = −3.742, df = 8, p = 0.006.

20



JAPE project were involved in STANDUP. Nevertheless, the design and imple-
mentation effort involved in building (from scratch) the STANDUP system was
considerable, being probably around four to five person-years of full-time work
(without including the further labour involved in the evaluation phase). ¶

11.2 Changes in coverage

The set of schemas in STANDUP is slightly different from that in JAPE. Al-
though we added one further schema (so that substitutions of a word into an-
other word could happen at the end as well as at the start), STANDUP had
fewer schemas (11 to JAPE’s 15) This is due to two factors. Firstly, we were
able to combine certain JAPE schemas which were very similar. Secondly, we
had to omit some of the JAPE schema, those involving verbs, for jokes such as
(3) and (12).

(12) What’s the difference between a sea and a sale?
You can sail a sea but you can’t see a sale.

These schemas rely on information about what nouns are suitable subjects or
objects for verbs, which, in the JAPE project, was compiled by hand in a
relatively labour-intensive fashion. As we could not see a way to scale this
up automatically, we had to do without these schemas. This highlights the
difference in purpose between a research prototype and a working system. A
prototype is often built to test whether some particular algorithm or design will
work in principle – a proof of concept. This can be done satisfactorily if the
necessary knowledge resources or environment can be created, even if only on
a small scale. Thus Binsted had shown that there was a valid computational
route to riddles such as (3) and (12), but this is very different from devising a
practical means to make a large scale system which exploits this route.

11.3 Future directions

In view of the success of the STANDUP project, there are a number of ways in
which this work could be taken further:

Longitudinal studies. It would be very illuminating to carry out a long term
study of the use of STANDUP by children, to determine (as rigorously as
can be managed) what effects this language play might have on linguis-
tic, communicative or social skills. Comparisons with other educational
software, particularly of a “language play” nature, would be interesting.

¶Three project leaders (HP, GR, AW) contributed to the design to varying degrees, one
research assistant (DOM) carried out a large portion of the gathering of requirements and the
design of the user interface, and one research assistant (RM) carried out all the implementation
as well as contributing to the whole system design, the gathering of requirements and the
evaluation sessions. RB took a leading role in the evaluations, having replaced DOM in the
final year of the project.

21



Other user populations. Although the software was primarily designed for
children with the types of disabilities typified by our evaluation group at
Corseford School, it would be interesting to explore use by other educa-
tional groups, such as children with autism, or second-language learners.

Richer interactions. At the start of the work, we considered a number of
ways in which a user could potentially interact with a joke-generator,
collaborating to choose words or joke patterns. However, our requirements
studies (and the limited time available) indicated that we should initially
aim for a relatively simple set of possible interactions. Now that we have
a stable software platform, we would like to return to this question, by
incorporating further ways in which users could guide, or be guided by,
the software. This could provide a richer educational environment.

Other joke types. The project was limited to punning riddles because there
was proof (via JAPE) that such jokes could be handled computation-
ally in a systematic manner using just lexical resources. If further joke
types could be implemented (e.g. ‘knock-knock’ jokes (Taylor and Mazlack
2004)), this would provide a richer range of linguistic play for the users.

A testbed for humour. The STANDUP software could become a framework
to test ideas about humour, at least in limited ways. If users were given
a facility to record their opinions of a joke (using a simple slider, or even
a button labelled ‘I don’t understand! ’), it would be possible to gather
a large amount of data about which punning riddles work best. This
could be used by researchers looking for regularities in what children find
funny. Alternatively, it might be possible to embed, in a future version of
STANDUP, some conjecture about factor(s) which affect funniness, and
then determine the empirical effectiveness of this.

11.4 Conclusions

As noted above, the evaluations were not intended to prove conclusively that
using STANDUP has a beneficial long term effect on children’s skills. However,
they were enough to demonstrate that the software is very definitely usable by
the intended user group, and there is strong anecdotal evidence to suggest that,
in more protracted use, it could well have the desired effects, even if only in a
small way.

We have also shown that even a relatively clean research prototype like
JAPE may require considerable labour to transform its concept into a com-
plete application. However, we believe that the effort has been well worthwhile,
demonstrating both the viability of the ideas for this educational purpose and
the practicality of taking computational humour research to this further level.

22



Acknowledgements

This work was supported by grants GR/S15402/01 and GR/S15419/01, and the
preparation of this paper was supported by grant EP/E011764/1, all from the
UK Engineering and Physical Sciences Research Council. The Widgit Rebus
symbols are the property of Widgit Software Ltd and are used under licence.
The Picture Communication Symbols are the property of Mayer-Johnson LLC
and are used under licence. We are extremely grateful to Capability Scotland
and the staff and pupils at Corseford School for their help with the evaluation
sessions. Thanks are also due to the Aberdeen NLG group for comments on an
earlier draft of this paper.

23



References

Binsted, K. 1996. Machine humour: An implemented model of puns. Ph. D.
thesis, University of Edinburgh, Edinburgh, Scotland.

Binsted, K., B. Bergen, and J. McKay. 2003. Pun and non-pun humour in
second-language learning. In Workshop Proceedings, CHI 2003, Fort Laud-
erdale, Florida.

Binsted, K., H. Pain, and G. Ritchie. 1997. Children’s evaluation of computer-
generated punning riddles. Pragmatics and Cognition 5 (2), 305–354.

Binsted, K. and G. Ritchie. 1994. An implemented model of punning riddles.
In Proceedings of the Twelfth National Conference on Artificial Intelli-
gence (AAAI-94), Seattle, USA.

Binsted, K. and G. Ritchie. 1997. Computational rules for generating punning
riddles. Humor: International Journal of Humor Research 10 (1), 25–76.

Black, R., A. Waller, G. Ritchie, H. Pain, and R. Manurung. 2007. Evalua-
tion of joke-creation software with children with complex communication
needs. Communication Matters 21 (1), 23–27.

Cockburn, A. 2000. Writing Effective Use Cases. Boston, MA: Addison-
Wesley Professional.

Coltheart, M. 1981. The MRC psycholinguistic database. The Quarterly Jour-
nal of Experimental Psychology 33(A), 497–505.

Elmasri, R. and S. B. Navathe. 2000. Fundamentals of Database Systems
(Third ed.). Reading, Mass.: Addison-Wesley.

Fellbaum, C. 1998. WordNet: An Electronic Lexical Database. Cambridge,
Mass.: MIT Press.

Frederickson, N., U. Frith, and R. Reason. 1997. The Phonological Assessment
Battery. Windsor: NFER-Nelson.

Gjedde, L. 2004. Designing for learning in narrative multimedia environments.
In S. Mishra and R. C. Sharma (Eds.)., Interactive Multimedia in Educa-
tion and Training, Chapter 6. Hershey, PA: Idea Group Publishing.

Gjedde, L. 2006. Story-based e-learning as a vehicle for inclusive educa-
tion. In L. Gjedde and A.Méndez-Vilas (Eds.)., Current Developments
in Technology-Assisted Education. Madrid: Formatex.

Griffiths, P. 2000. Lexical support for joke generation. Master’s thesis, Divi-
sion of Informatics, University of Edinburgh, Edinburgh, Scotland.

Hulstijn, J. and A. Nijholt. (Eds.) 1996. Proceedings of the International
Workshop on Computational Humor, Number 12 in Twente Workshops
on Language Technology, Enschede, Netherlands. University of Twente.

Jurafsky, D. and J. H. Martin. 2000. Speech and Language Processing: an
Introduction to Natural Language Processing, Computational Linguistics
and Speech Recognition. New Jersey: Prentice-Hall.

24



King-DeBaun, P. 1997. Computer fun and adapted play: strategies
for cognitively or chronologically young children with severe disabili-
ties; Part I and II. In Proceedings of Technology And Persons With
Disabilities Conference, California State University, Northridge, CA.
http://www.csun.edu/cod/conf/1997/proceedings/csun97.htm (last vis-
ited February 2007).

Lessard, G. and M. Levison. 1992. Computational modelling of linguistic hu-
mour: Tom Swifties. In ALLC/ACH Joint Annual Conference, Oxford,
pp. 175–178.

Lessard, G. and M. Levison. 1993. Computational modelling of riddle strate-
gies. In ALLC/ACH Joint Annual Conference, Georgetown University,
Washington, DC, pp. 120–122.

Levison, M. and G. Lessard. 1992. A system for natural language generation.
Computers and the Humanities 26, 43–58.

Lindsay, G. and J. Dockrell. 2000. The behaviour and self-esteem of children
with specific speech and language difficulties. British Journal of Educa-
tional Psychology (70), 583–601.

Low, A. 2003. Software support for joke creation. Honours dissertation, School
of Informatics, University of Edinburgh, Edinburgh, UK.

Machado, I., P. Brna, and A. Paiva. 2001. Learning by playing: supporting
and guiding story-creation activities. In J. D. Moore, C. L. Redfield, and
W. L. Johnson (Eds.)., Artificial Intelligence in Education: AI-ED in the
Wired and Wireless Future, pp. 334–342. Amsterdam: IOS Press.

Manurung, R., D. O’Mara, H. Pain, G. Ritchie, and A. Waller. 2006. Build-
ing a lexical database for an interactive joke-generator. In Proceedings of
Language Resources and Evaluation Conference, Genoa.

Manurung, R., G. Ritchie, D. O’Mara, A. Waller, and H. Pain. 2006. Com-
bining lexical resources for an interactive language tool. In Proceedings
of the 12th Biennial International Conference of the International Society
for Augmentative and Alternative Communication, Düsseldorf, Germany.
CD.

Manurung, R., G. Ritchie, H. Pain, A. Waller, R. Black, and D. O’Mara.
Forthcoming. Adding phonetic similarity data to a lexical database. Lan-
guage Resources and Evaluation.

McKay, J. 2000. Generation of idiom-based witticisms to aid second language
learning. Master’s thesis, Division of Informatics, University of Edinburgh,
Edinburgh, Scotland.

McKay, J. 2002. Generation of idiom-based witticisms to aid second language
learning. See Stock, Strapparava, and Nijholt (2002), pp. 77–87.

Mihalcea, R. and S. Pulman. 2007. Characterizing humour: An exploration
of features in humorous texts. In Proceedings of the Conference on Com-
putational Linguistics and Intelligent Text Processing (CICLing).

25



Mihalcea, R. and C. Strapparava. 2006. Learning to laugh (automatically):
Computational models for humor recognition. Computational Intelli-
gence 22 (2), 126–142.

Miller, G., C. Leacock, T. Randee, and R. Bunker.. 1993. A semantic concor-
dance. In Proc. 3rd DARPA Workshop on Human Language Technology,
Princeton, USA.

Miller, G. A., R. Beckwith, C. Fellbaum, D. Gross, and K. Miller. 1990. Five
papers on WordNet. International Journal of Lexicography 3 (4). Revised
March 1993.

Musselwhite, C. and L. Burkhart. 2002. Social scripts: co-planned se-
quenced scripts for AAC users. In Proceedings of Technology And Persons
With Disabilities Conference, California State University, Northridge,
CA. http://www.csun.edu/cod/conf/2002/proceedings/csun02.htm (last
visited February 2007).

O’Mara, D. 2004. Providing access to verbal humour play for children with
severe language impairment. Ph. D. thesis, Applied Computing, University
of Dundee, Dundee, Scotland.

O’Mara, D., A. Waller, and J. Todman. 2002. Linguistic-humour and the
development of language skills in AAC. In Proceedings of 10th Biennial
Conference of the International Society for Augmentative and Alternative
Communication, Odense, Denmark.

O’Mara, D. A. and A. Waller. 2003. What do you get when you cross a
communication aid with a riddle? The Psychologist 16 (2), 78–80.

O’Mara, D. A., A. Waller, and G. Ritchie. 2000. Joke telling as an introduction
and a motivator to a narrative-based communication system for people
with severe communication disorders. Interfaces 42 (13).

Papert, S. 1980. Mindstorms: Children, Computers, and Powerful Ideas. New
York: Basic Books.

Reiter, E. and R. Dale. 2000. Building Natural Language Generation Systems.
Cambridge, UK: Cambridge University Press.

Ritchie, G. 2001. Current directions in computational humour. Artificial In-
telligence Review 16 (2), 119–135.

Ritchie, G. 2003. The JAPE riddle generator: technical specification. Infor-
matics Research Report EDI-INF-RR-0158, School of Informatics, Uni-
versity of Edinburgh, Edinburgh.

Ritchie, G. 2004. The Linguistic Analysis of Jokes. London: Routledge.

Robertson, J. and B. Cross. 2004. Children’s perceptions about writing
with their teacher and the storystation learning environment. Interna-
tional Journal of Continuing Engineering Education and Lifelong Learn-
ing 14 (6), 454–471.

26



Robertson, J. and J. Good. 2003. Using a collaborative virtual role-play envi-
ronment to foster characterisation in stories. Journal of Interactive Learn-
ing Research 14 (1), 5–29.

Robertson, J. and J. Oberlander. 2002. Ghostwriter: Educational drama and
presence in a virtual environment. Journal of Computer Mediated Com-
munication 8 (1).

Schonell, F. J. 2003. The Essential Spelling List. Cheltenham, UK: Nelson.
First published 1932.

Semel, E., E. H. Wiig, and W. A. Secord. 1995. Clinical Evaluation of Lan-
guage Fundamentals 3. San Antonio, Texas: The Psychological Corpora-
tion.

Smith, M. 2005. Literacy and Augmentative and Alternative Communication.
Burlington: Elsevier Academic Press.

Stark, J., K. Binsted, and B. Bergen. 2005. Disjunctor selection for one-line
jokes. In M. T. Maybury, O. Stock, and W. Wahlster (Eds.)., Proceedings
of First International Conference on Intelligent Technologies for Interac-
tive Entertainment, Volume 3814 of Lecture Notes in Computer Science,
pp. 174–182. Springer.

Stock, O. and C. Strapparava. 2002. Humorous agent for humorous acronyms:
the HAHAcronym project. See Stock, Strapparava, and Nijholt (2002), pp.
125–135.

Stock, O. and C. Strapparava. 2003. HAHAcronym: Humorous agents
for humorous acronyms. Humor : International Journal of Humor Re-
search 16 (3), 297–314.

Stock, O. and C. Strapparava. 2005. The act of creating humorous acronyms.
Applied Artificial Intelligence 19 (2), 137–151.

Stock, O., C. Strapparava, and A. Nijholt. (Eds.) 2002. Proceedings of the
April Fools’ Day Workshop on Computational Humor, Number 20 in
Twente Workshops on Language Technology, Enschede, Netherlands. Uni-
versity of Twente.

Taylor, J. M. and L. J. Mazlack. 2004. Computationally recognizing wordplay
in jokes. In Proceedings of Cognitive Science Conference, Stresa, Italy, pp.
2166–2171.

Townsend, W. C. 1975. A handbook of homophones of General American
English. Waxhaw, N.C.: International Friendship.

Venour, C. 1999. The computational generation of a class of puns. Master’s
thesis, Queen’s University, Kingston, Ontario.

Walker, W., P. Lamere, and P. Kwok. 2002. FreeTTS - a performance case
study. Technical Report TR-2002-114, Sun Microsystems, Menlo Park,
CA. http://research.sun.com/techrep/2002/abstract-114.html.

Waller, A. 2006. Communication access to conversational narrative. Topics
in Language Disorders 26 (3), 221–239.

27



Waller, A. and D. O’Mara. 2003. Aided communication and the development
of personal storytelling. In S. von Tetzchner and N. Grove (Eds.)., Aug-
mentative and Alternative Communication: Developmental Issues, Vol-
ume 11, pp. 256–271. London: Whurr Pub. Ltd.

Waller, A., D. O’Mara, R. Manurung, H. Pain, and G. Ritchie. 2005. Fa-
cilitating user feedback in the design of a novel joke generation system
for people with severe communication impairment. In Proceedings of 11th
International Conference on Human-Computer Interaction, Las Vegas.

Wenger, E. 1987. Artificial Intelligence and Tutoring Systems: Computational
and Cognitive Approaches to the Communication of Knowledge. Los Altos,
CA: Morgan Kaufmann.

Yuill, N. 1996. A funny thing happened on the way to the classroom: Jokes,
riddles, and metalinguistic awareness in understanding and improving
poor comprehension in children. In C. Cornoldi and J. Oakhill (Eds.).,
Reading Comprehension Difficulties: Processes and Intervention, pp. 193–
220. Mahwah, NJ: Lawrence Erlbaum Associates.

Yuill, N. 1998. Reading and riddling: The role of riddle appreciation in un-
derstanding and improving poor text comprehension in children. Cahiers
de Psychologie Cognitive 17 (2), 313–342.

Appendix: Sample output

Unlike the JAPE project, STANDUP included no evaluation of the humorous
quality of its constructed jokes. The categorisation below (into good and bad)
is informal and subjective.

These are some of the STANDUP system’s better jokes.

What do you call a fish tank that has a horn?
A goldfish bull.

What kind of a temperature is a son?
A boy-ling point.

Why is a bronzed handle different from a fringe benefit that is lordly?
One is a tanned grip, the other is a grand tip.

What do you call a heavenly body with an assembly line?
A manufacturing planet.

What do you get when you cross a degree celsius with a water?
A high c.

What is the difference between a desolate amusement and a smart
impact?

One is a bleak show, the other is a chic blow.

28



What do you get when you cross a frog with a road??
A main toad.

What do you get when you cross a kerb with a preserve?
A lemon curb.

What do you call a cross between a bun and a character?
A minor roll.

What do you call a washing machine with a september?
An autumn-atic washer.

What do you get when you cross a choice with a meal?
A pick-nic.

How is an unclean tinned meat different from a pampered sacred
writing?

One is a soiled spam, the other is a spoiled psalm.

What do you call a cross between a cereal and a vegetable?
A grain green.

What do you call an oxen fight?
A cattle battle.

What do you get when you cross a buffalo with a sink?
A bison basin.

What do you get when you cross a fragance with an actor?
A smell gibson.

What do you call an author with a zipper?
A skirt vonnegut.

The following are some of STANDUP’s weaker efforts.

What do you call a dull whole lot?
A gray deal.

How is a jolly hearth like a gay occurrence?
They are both merry fires.

What kind of jug has a feather?
A long bird.

What do you call a paw with a state?
A right land.

29



What do you call a preference check?
A stress taste.

What do you get when you cross a superiority with a district?
A favorable possession.

What do you call a banquet control?
An iron feast.

What kind of a limb has a Bahrain?
An arab leg.

What do you call a bread that has a ewe?
A gold toast.

30



Figure 1: A screenshot of the main menu display.

31


