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Abstract: Nuclear Magnetic Resonance (NMR) relaxometry is a powerful technique that allows
to investigate properties of materials. More advanced relaxometry techniques such as Fast Field-
Cycling (FFC) require the magnetic field to reach any desired value in a very short time (few
milliseconds) and field oscillations to stay within few ppms. Such specifications call for the
introduction of a suitable Field Frequency Lock (FFL) system. FFL relies on an indirect measure
of the magnetic field which can be obtained by performing a parallel NMR experiment with a
known sample. In this paper we propose a PID controller able to guarantee field fluctuations
to stay below the desired level and short settling time. The tuning of the controller is based
on a mathematical description of the entire process, which is validated by performing real
experiments. Numerical simulations show promising results that we expect to be confirmed by
real experiments.
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1. INTRODUCTION

NMR allows to gather information about properties of an
unknown sample by studying its resonance frequency ω0

when placed in a known, constant magnetic field B0. The
resonance frequency ω0 is in fact given by

ω0 = −γB0 (1)

where γ is the gyromagnetic ratio typical of the nuclear
specie (may not be known a priori) and B0 is the main
magnetic field, typically generated by a resistive or su-
perconducting magnet. If the value of B0 is known and
stable, it is then possible to identify the nuclear specie
in the sample, as well as to study molecular structures
and interactions. The Field Frequency Lock system is a
well-known approach to avoid oscillations of the magnetic
field, which may degrade the performance of the NMR
experiment. The idea is to obtain an indirect but very fine
grained measure of the magnetic field fluctuations from a
parallel NMR experiment, that is carried out over a known
sample (e.g. 2H) experiencing the same magnetic field we
wish to control (Maly et al. (2006); Li et al. (2011); Jiang
et al. (2010); Hoult et al. (1978); Yanagisawa et al. (2008);
Samra (2008); Kan et al. (1978)).

If a field deviation ∆B(t) (which may arise from current
oscillations or from external electromagnetic disturbances)
is present, equation (1) can be written as

ω0 + ∆ω(t) = −γ(B0 + ∆B(t))

? This work was supported by European Project ”Improving Diag-
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therefore ∆B(t) results in a frequency deviation ∆ω(t)
such that

∆ω(t) = −γ∆B(t) (2)

where the value of γ is known for the lock sample. The
NMR lock signal is obtained after the quadrature detector
and oscillates at ∆ω(t); it is used to setup a closed loop
which must reduce oscillations in the magnetic field.

In FFC NMR a standard control loop takes care of the
tracking of the field profile, but cannot provide the desired
precision during the measurement phase. The FFL loop
must then be used when the field reaches a neighbourhood
of the desired measurement value. This means that the
FFL must deal with the following requirements:

• steady state perfect tracking of a step reference;
• maximum settling time smaller than a given value;
• disturbance rejection.

Since no FFL systems for FFC are currently available, it
is necessary to update the conventional solutions to cope
with the former specifications.

According to the literature, different approaches are pos-
sible to implement the FFL. The classical one is to realize
the loop as a Phase Locked Loop (PLL), where the NMR
lock signal is compared to a reference one and an error
signal proportional to ∆ω(t) is generated. This error signal
can be used to feed a P or PI regulation block (see Kan
et al. (1978); Hoult et al. (1978); Jiang et al. (2010)).
Still, this approach suffers from low SNR and is ineffec-
tive in rejecting high frequency noise (Samra (2008)). To
overcome these problems a different approach is required.



The lock sample is stimulated with a series of low power,
high repetition rate pulses, which brings the sample in
the so called Steady State Free Precession (SSFP) regime
(Carr (1958); Patz (1988); Gyngell (1989); Bagueira de
Vasconcelos Azeredo et al. (2000)). However, this approach
calls for a detailed model of the NMR lock experiment for
a proper synthesis of the regulator. Just few works in liter-
ature exploit a NMR model for the design of the controller
(e.g. Hoult et al. (1978); Samra (2008)), and none of them
performs an exhaustive comparison of existing models to
understand their advantages and limitations for control
purposes.
The main aim of this work is then the analysis of existing
models for NMR in SSFP regime (Bloch (1946); Schiano
et al. (1991); Samra (2008); Hahn (1950); Moraesa and
Colnago (2014)), their validation by means of real NMR
experiments and the derivation of a linear model that
can be used to drive the synthesis of a PID regulator. A
methodology for the synthesis is described and the overall
closed-loop design is tested by performing numerical sim-
ulations which confirm the correctness of the approach.

2. LOCK SEQUENCE AND NMR AS SENSOR

As stated in the previous section, the lock sample must be
stimulated using a sequence of low power, high repetition
rate pulses to obtain a NMR signal which can be exploited
as a measure of the magnetic field deviation ∆B. For sake
of clarity let us introduce a rotating reference frame, xyz,
with the z axis aligned with the magnetic field B0 and
rotating at the nominal resonance frequency Ω = −γB0.
The situation is depicted in Figure 1. Let θ be the angle
the magnetization vector M moves away from the z axis
because of each Radio Frequency (RF) pulse. Let T be the
inter-pulse period. The lock sequence, shown in Figure 2, is
then composed of all identical RF pulses with θ small (i.e.
few degrees) and T << T1, T2 (possibly T < T2∗), where
T1 and T2 are respectively the spin-lattice relaxation time
constant and the spin-spin relaxation time constant, while
T2∗ is the spin-spin time constant in a non-homogeneous
magnetic field (Keeler (2011)). When the NMR lock sam-
ple is stimulated this way, the magnetization vector oscil-
lates around a steady state position (Carr (1958)). If in
particular RF pulses are applied along the y axis, then the
magnetization reaches a steady state condition (SSFP) in
the xz plane. If no field deviation is present (i.e. ∆B = 0),
the y component, My, is zero. If, instead, a field deviation
is present, My provides a measure of the former quantity.
Notice that the ∆B to My curve (see Figure 3) is linear
just around ∆B = 0, meaning that we can properly sense
field deviations in the interval [∆Bmin; ∆Bmax] (Samra
(2008)).

3. CLASSICAL MODELS FOR NMR: ANALYSIS AND
VALIDATION

The usual way of describing the motion of M during an
NMR experiment is Bloch Equations (BE) (Bloch (1946)).
Let M0 be the magnitude of M at equilibrium (measured
in Volt) and let B1 be the amplitude of the RF magnetic
field. We then write BE in the rotating reference frame
xyz, assuming RF pulses to be applied along −y (i.e.
B1 < 0), as
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Fig. 1. The magnetization vector M in the rotating refer-
ence frame xyz.

Fig. 2. The lock sequence is a series of identical RF pulses
with inter-pulse period T and tip angle θ.
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Fig. 3. The static input/output relation of the NMR as a
sensor. FWLR is the Full Width of the Linear Region,
i.e. the width of the interval [∆Bmin; ∆Bmax]. Here
the curve can be approximated as a straight line.

dMx(t)

dt
=
−1

T2
Mx(t) + γ∆B(t)My(t)− γB1(t)Mz(t)

dMy(t)

dt
= −γ∆B(t)Mx(t)− 1

T2
My(t)

dMz(t)

dt
= γB1(t)Mx(t)− 1

T1
Mz(t) +

M0

T1
(3)

As a dynamic system, BE require two inputs: the first one
is the field deviation ∆B(t), the second one is the square
wave representing the lock sequence of RF pulses. Notice



that we are interested inMy(t) as the output of the system.
When ∆B(t) varies as a step, the output My(t) converges
to a periodic behaviour rather than a single equilibrium
value. This makes it difficult to perform linearization. To
overcome this problem we move to a discretized version
of BE, which is described in many works (Samra (2008);
Moraesa and Colnago (2014); Carr (1958)).

The evolution of M is then given by

M(k + 1) = A(T1, T2)W (φ)V (θ)M(k) +B(T1)

φ = −γT∆B

A(T1, T2) =

e
−T
T2 0 0

0 e
−T
T2 0

0 0 e
−T
T1



B(T1) =

 0
0

M0(1− e
−T
T1 )



V (θ) =

[
cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)

]

W (φ) =

[
cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

]

(4)

Matrix A and vectorB describe the process of relaxation in
the dynamics of the system. Rotation matrix V describes
the effect of each RF pulse as a rotation of M about the y
axis of an angle θ. Rotation matrix W instead introduces
the drift φ of the magnetization in the xy plane caused by
a field deviation ∆B which is assumed as constant during
T (SEE 1). This model represents a discretization of BE
with sampling time equal to T , the inter-pulse period,
therefore all the oscillations of M occurring during each
T are neglected. With this new Discrete time, Nonlinear
Model (DNLM) the output My(k) converges to a proper
steady state value, making linearization an easier task. In
addition, a single input (∆B) is sufficient since the effect of
the Lock sequence is embedded in the model. Linearization
of DNLM around ∆B = 0 provides a discrete time transfer
function from ∆B(k) to My(k) given by

G(z) =
My(z)

∆B(z)
=

b2

z − e−T
T2

b2 = γT
−e−T

T2 sin(θ)M0(1− e−T
T1 )

1− cos(θ)(e
−T
T1 + e

−T
T2 ) + e

−T
T1 e

−T
T2

(5)

where all the quantities in b2 are known. In the following
we will refer to this model as LM.

3.1 Validation

For the purpose of validation, a set of NMR experiments
is carried out relying on a permanent magnet providing
a stable field of 500 Gauss. The lock sequence is applied
to different samples with different values of T and θ (for
a detailed description of trials refer to Tables 3 and 4).
For gain evaluation, the response to a step field deviation

Table 1. Comparison of model-predicted
steady state values of My to real ones after

the application of a step field disturbance.

Trial ŜSLM

[mV]
ŜSDNLM

[mV]
SS
[mV]

ŜTLM

[s]
ŜTDNLM

[s]
ST
[s]

1.1 700 32 1.2 0.15 0.22 0.15
1.2 400 52 4 0.15 0.22 0.20
1.3 700 25 2.2 0.17 0.25 0.25
2.1 450 30 1.6 0.01 0.03 0.03
2.2 300 51 2.5 0.01 0.03 0.03
2.3 530 28 2.5 0.012 0.03 0.03

∆B = −0.235 Gauss is concerned and the predicted
steady state values of My, (ŜSDNLM and ŜSLM ), are
compared to the real ones (SS). Results are shown in
Table 1. A comparison between real settling times (ST )

to DNLM and LM estimated ones (ŜTDNLM and ŜTLM )
is shown in Table 1 as well.

When comparing the results obtained from DNLM and
LM to the data collected from real NMR experiments these
considerations arise:

• the time constant of DNLM represents a good ap-
proximation of that of the real system;
• the time constant of LM represents an acceptable

approximation of that of the real system, however it
is slightly faster than both DNLM and the real data;
• the gain of both DNLM and LM heavily overestimates

the gain of the real system.

The explanation for this error can be found in the field
inhomogeneity, which is not taken into account by any
of the previous models. They are in fact macroscopic
models, intended to describe the evolution of the bulk
magnetization vector, without considering the evolution
of the small components which sum up into the M vector
itself. In presence of a non-homogeneous field, the curve in
Figure 3 shows a reduction of the slope in the linear region
and a widening of the latter. The settling time instead is
not affected by the non-homogeneity of the magnetic field.
This phenomenon is consistent with the collected data.
Since our goal is to obtain a linear model to drive the
synthesis of the regulator, and since LM provides a good
estimation of the process time constant, a possibility is to
correct its gain. LM can be written as

G(z) =
My(z)

∆B(z)
=
g(1− e−T

T2 )

z − e−T
T2

Where its static gain g can be estimated as

g =
Mss
y

∆B
(6)

where ∆B is a known disturbance lying in the linear region
of the curve in Figure 3 and Mss

y is the steady state value
of the transverse magnetization as a consequence of the
application of ∆B.

The gain g can be obtained in two ways:

• modifying the existing nonlinear model to keep into
consideration the missing phenomena and run a sim-
ulation to provide a gain estimation;



• developing a brand new model which allows to es-
timate the gain from a set of parameters via Least
Square (LS) identification.

Both approaches will be investigated in the next sections.
A similar problem appeared in Samra (2008), where the
gain was modified by performing a normalization w.r.t. the
maximum measured value of My. Still, in that case, the
experiment was setup in a friendly environment, where
the field disturbance was generated by a dedicated coil.
In our case that approach may not be applied as all
preliminary measures would be directly performed with
the noisy magnet. Therefore, we would like to reduce the
number of measures which must be performed in open-
loop.

4. GAIN CORRECTION STRATEGIES

4.1 Bloch-based Isochromat Model

When the main magnetic field B0 is non-homogeneous the
shape of the absorption spectrum is wider and shorter
than the ideal case. This means that more frequencies
around the Larmor one are involved in the resonance
process. Each of these frequencies can be associated to a
group of spins, called isochromat, which sees the same field
value along the z axis. To properly study this phenomena,
Hahn suggests in his paper (Hahn (1950)) to keep into
account the separate behaviour of isochromats and then
sum their contributions properly weighted. The same
approach is adopted in Carr (1958); Patz (1988); Gyngell
(1989); Bagueira de Vasconcelos Azeredo et al. (2000). In
the following we will refer to this model as Bloch-based
Isochromat Model (BBIM). The idea is to run BE for
each isochromat i, precessing at speed ωi, to compute its
contribution mi(t). Then M(t) is obtained summing all
individual contributions mi(t) with proper weights ai. So
one can write

M(t) =
∑
i

aimi(t) (7)

The Lorentzian shape, centred at frequency ω0, can be
written as

S(ω) =
T2∗

1 + (T2∗(ω − ω0))2
(8)

If an interval [−ω;ω] is considered, S(ω) can be normalized
as follows

Sn(ω) =
S(ω)∑ω
−ω S(ω)

(9)

therefore we can define

ai = Sn(ωi) (10)

In order to validate BBIM a set of trials with different
samples and different experimental parameters is carried
out. As for LM validation, trials are performed with the
permanent magnet. For comparison, a field deviation of
∆B = −0.235 Gauss is considered since it lies well within
the linear region. Real data are filtered to remove high
frequency noise. The model predicted values are obtained
as the average of the steady state behaviour of My. The

predicted steady state values of My (ŜSBBIM ) and the
measured ones (SS) are compared in Table 2. The static

gain is now much closer to that of real experiments. The
static gain for LM, g, can then be obtained running a
simulation of BBIM, according to (6). An example of
BBIM simulation is shown in Figure 4, the corresponding
real data in Figure 5.

4.2 Constrained Least Squares Model

A second approach consists in estimating g using LS
optimization starting from the set of collected data. Notice
that one can write g as

g =
Mss
y

∆B
= −γY (11)

with

Y =
Mss
y

∆ω
(12)

where
∆ω = −γ∆B (13)

Then we can setup a Constrained LS (CLS) identification
for Y as

β̂CLS = minβ,p(Y − Φβ)′(Y − Φβ)

subject to : minp pβ > 0

β(3), β(5) > 0

∀ Φ < p < Φ

(14)

where Φ is the measured sensitivity matrix, which is
known, and Φ and Φ are the lower and upper bounds for
the sensitivity matrix (each regressor is supposed to lie
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Fig. 4. BBIM simulation for Trial 1.2. My as a response
to a series of steps of ∆B = −0.235 Gauss each one.
For gain evaluation only the first step is considered.
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Fig. 5. Collected data for Trial 1.2. My as a response to a
series of steps of ∆B = −0.235 Gauss each one. For
gain evaluation only the first step is considered.



Table 2. Comparison of ŜSBBIM and ŜSCLS
to real SS after the application of a step field

disturbance.

Trial ŜSBBIM

[mV]
ŜSCLS

[mV]
SS [mV]

1.1 3.5 2.3 1.2
1.2 6 3.5 4
1.3 3 4.1 2.2
1.4 12 3.6 3
2.1 2.5 2.3 1.6
2.2 4 3.5 2.5
2.3 2 4 2.5
2.4 3 3.3 3
3.1 6 2.5 3
3.2 9 3.7 6
3.3 4.5 4.2 3
4.1 3 5.1 3
4.2 6 6.3 8
4.3 1 6.8 5
5.1 3.5 3.4 3
5.2 9 4.6 6
5.3 3 5.1 5

within these bounds, which must be chosen according to
the experimental setup).
The regressors we use for the identification are

ϕ = [T1 T2 T2∗ T θ M0]

Notice that we use constraints to force Y to be positive
and to increase whenever T2∗ or θ increase (a standard LS
approach does not ensure that these points are satisfied a
priori). The resulting optimization problem is a quadratic
program which is solved with Matlab optimization tool
Yalmip (Löfberg (2012)). With real data shown in Table
2, related to the trials reported in Tables 3 and 4, the
optimal value for β is given by

β̂CLS =


0.000000068046973176
0.000000083235109192
0.000550233592575485
0.000869743805386847
0.000002707415573927
0.000000216962856730

 (15)

and the predicted steady state values of My, (ŜSCLS), are
reported in Table 2.

5. SYNTHESIS OF THE REGULATOR

The methodology introduced in the following allows to
synthesize a PID regulator in a parameterized way, thus al-
lowing to obtain the desired loop functions independently
on the magnet and on the NMR sample used for the lock
experiment. Notice that in Samra (2008) a correction coil
is used as actuator for the control action. The latter should
be carefully engineered to generate a spatially uniform
correction. Moreover, some space is required to properly
place the correction coils. A PI controller was used to
compensate for the NMR time constant only, since no set-
tling time requirement was considered. In our case instead
the control action will result in a current directly injected
into the main magnet. This will allow to save space and
to preserve field homogeneity. Our approach will require
to properly model the behaviour of the magnet and to

use a PID regulator to compensate for both the magnet
and the NMR time constants, allowing us to achieve the
desired settling time. The scheme in Figure 6 shows the
overall closed-loop setup for the FFL in terms of transfer
functions. In particular C is a known conductance, while

Gmag(s) =
µmag

1 + sτmag
(16)

is the transfer function of the magnet generating B0,

G(s) =
µnmr

1 + sτnmr
(17)

is the continuous-time version of G(z).

R(s) =
µr(1 + sτz1)(1 + sτz2)

s(1 + sτp)
(18)

is a PID controller in the realizable form.

Fig. 6. Block scheme with transfer function for the FFL.
u(t) is the control action, ∆I(t) is the overall current
deviation from the nominal one; it is the sum of the
current from the regulator and the current distur-
bance ∆Id(t); ∆B(t) is the overall field deviation seen
by the NMR sample; it is the sum of the field from
the magnet and the field disturbance∆Bd(t); My(t) is
the y component of the transverse magnetization in
the rotating frame; N(t) is measurement noise; e(t) is
the error signal feeding the regulator.

The closed-loop lock system should provide:

• stability of the closed-loop system;
• perfect tracking of a step reference at steady state

settling time Tsett < 10 ms;
• rejection of current/field oscillations;

The overall process transfer function is then given by

P (s) = G(s)Gmag(s)C =
µ

(1 + sτnmr)(1 + sτmag)
(19)

Since both the poles in P (s) have negative real part, it
is possible to use the two zeros of the PID (see equation
(18)) to cancel them. This means setting

τz1 = τmag
τz2 = τnmr

τp is placed out of the desired bandwidth and works as a
filter for SSFP oscillations of My (see Carr (1958)), which
act as measurement noise in this framework; at this point
the closed loop bandwidth depends on the gain only. To
keep the synthesis parametric one can set

µr =
1

µ
bw

where bw represents the desired close loop bandwidth
expressed in rad/s. A careful choice of bw and τp allows
to provide the required disturbance rejection and settling
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Fig. 7. Closed-loop simulation. ∆B(t) is the overall field
deviation seen by the NMR sample; My(t) is the y
component of the transverse magnetization in the
rotating frame; u(t) is the control action.

time, while obtaining a sufficient phase margin to achieve
robust stability.

To verify the correctness of the design of the PID regulator
a set of simulations is performed over a case-study sample
(see Trial 2.2 of Table 3; this results in τNMR = 1.66 ms).
Notice that we simulate a superconductive magnet, whose
pole is very close to the origin (τmag = 1.49 s). As a
consequence its behaviour can be considered in practice
as that of an integrator. Furthermore, a saturation is
introduced at the output of the regulator to model the
presence of the DAC working on an interval of [−3V ; 3V ].
The NMR process is modelled with BBIM to keep the
simulation as close as possible to the real experiment. In
particular, a limit-case situation is described. Figure 7
shows the response of the system to an initial condition
of ∆Bd = −0.0235 Gauss. The closed loop simulation
shows that the disturbance is correctly compensated and
the My(t) signal is brought to zero. The static precision
requirement is fulfilled. The settling time requirement is
achieved (it results Tsett = 10 ms) even if the saturation
of the control action u(t) is active. Still, if |∆Bd| assumes
a higher value, the regulator may not be able to ensure the
maximum settling time because of saturation. To mitigate
this problem, it is possible to change the value of the
conductance C: a study of the disturbances affecting the
magnetic field is needed to properly define its value. In
addition, the presence of an active saturation of the control
signal calls for an anti-windup scheme to improve the
overall performance of the regulator, which features an
integral term.

6. CONCLUSION

This paper aims to obtain a linearised model to properly
describe the behaviour of an NMR lock sample in SSFP
regime. Along with a model of the magnet which generates
B0, this is used to synthesize a parametrized PID regulator
which should bring the magnetic field to its desired value
in a given time interval. The parametrized approach allows
to obtain these goals independently on the magnet and on
the NMR sample chosen for the experiment. Closed loop
simulations highlight the correctness of the approach but
call for a detailed analysis of the disturbances action on
the plant to properly scale the control action as a current.
In addition, a suitable field sensor is required to open the

Table 3. Details of lock sequences used for
NMR trials.

Sample Trial T [µs] θ [deg]

1 1.1 100 4
1 1.2 100 8
1 1.3 200 8
1 1.4 200 8
2 2.1 100 4
2 2.2 100 8
2 2.3 200 8
2 2.4 200 8
3 3.1 100 4
3 3.2 100 8
3 3.3 200 8
4 4.1 100 5
4 4.2 100 9
4 4.3 200 9
5 5.1 100 4
5 5.2 100 8
5 5.3 200 8

Table 4. Details of samples used for NMR
trials.

Sample γ
[rad/(s*Gauss)]

T1 [s] T2 [s] T2∗ [s] M0 [V]

1 26751.3 0.06 0.02 0.000055 0.28
2 26751.3 0.007 0.002 0.000042 0.29
3 26751.3 0.18 0.056 0.000075 0.28
4 26751.3 2.37 2.14 0.000030 0.59
5 25166.2 1 0.8 0.000050 0.45

loop when the NMR sensor is brought out of its linear
region.
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