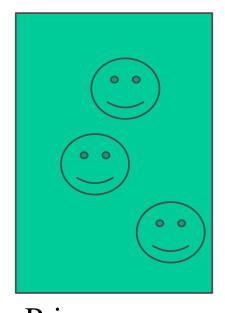


Implementation research design: an introduction to the split-plot randomised controlled trial

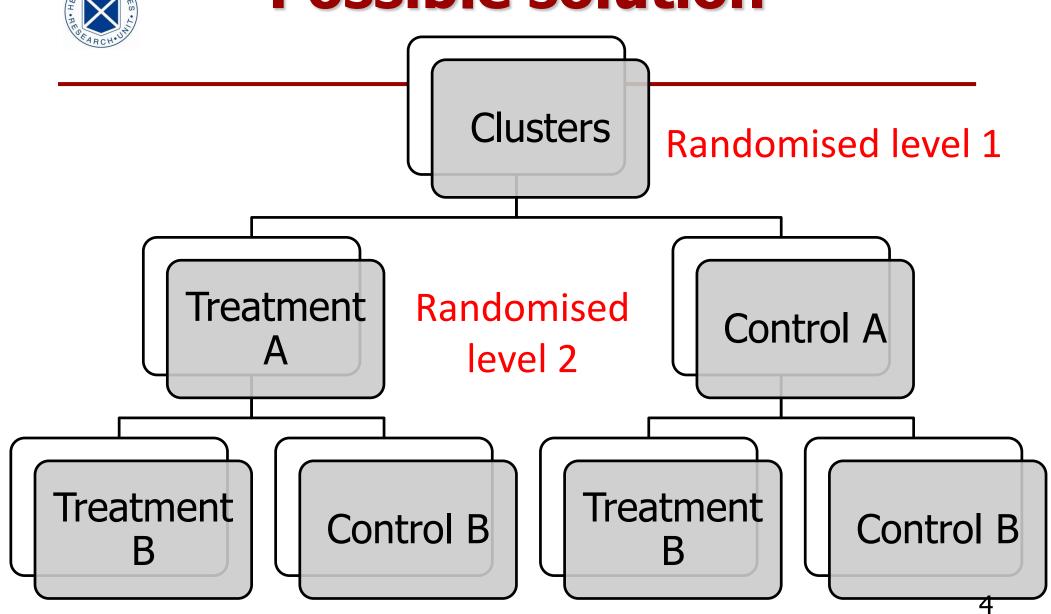
Beatriz Goulão
Graeme MacLennan
Craig Ramsay

Health Services Research Unit University of Aberdeen

Multi-level research questions need complex RCT designs


Cluster randomised trial

Primary care practice 1
Implementation package


Primary care practice 2
Implementation package

Primary care practice 3
Implementation package

Possible solution

When A+B are present

- 1. No interaction
- 2. Positive / synergistic interaction
 - Implementation package + chart = better results than
 - Only implementation package or only chart
- 3. Negative / Antagonistic interaction
 - Implementation package + chart = worse results than
 - Only implementation package or only chart

Factorial design

- Using a factorial design is more efficient but assumes no interaction
- Usually in a factorial design, the study is underpowered to detect an interaction
- Is the assumption of no interaction realistic in complex interventions and multi-level structures?

Our work

- 1. Review of the literature
 - 1. How are split-plot RCTs designed, analysed and reported in the healthcare literature?
- 2. Sample sizes for the split-plot
 - 1. How should researchers calculate a sample size for a split-plot RCT and report it?

Our work

Journal of Clinical Epidemiology

Journal of Clinical Epidemiology 96 (2018) 120-125

REVIEW

The split-plot design was useful for evaluating complex, multilevel interventions, but there is need for improvement in its design and report

Beatriz Goulão*, Graeme MacLennan, Craig Ramsay

Health Services Research Unit, University of Aberdeen, 3rd Floor, Health Sciences Building, Foresterhill, Aberdeen AB25 2ZD, UK Accepted 30 October 2017; Published online 4 November 2017

Abstract

Objectives: To describe the sample size calculation, analysis and reporting of split-plot (S-P) randomized controlled trials in health care (trials that use two units of randomization: one at a cluster-level and one at a level lower than the cluster).

Review results

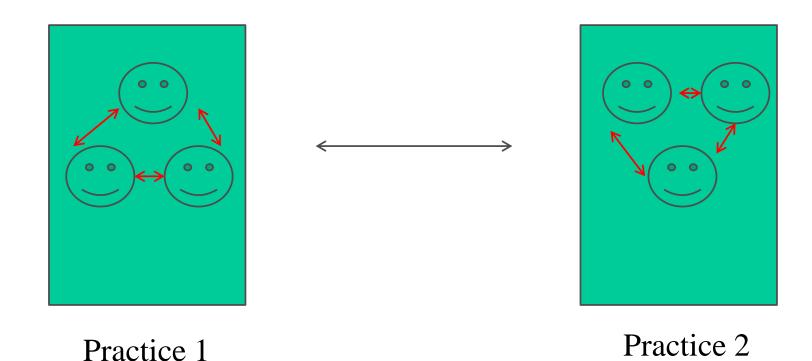
- 18 studies included
- Half of the studies report interest in the combined effects of the interventions
- Poorly reported design and flow of participant's diagram
- No closed formulae for sample size with researchers taking different approaches

Split-plot sample size: approach

Part I:

- Cluster randomised trial: how many clusters do we need to recruit and what is their size?

Part II:


Participant randomised trial: with that number of participants, what power do we have to detect a given target difference between groups?

Part III:

Interaction

Intracluster correlation

Split-plot sample size: approach

Part I:

- Cluster randomised trial: how many clusters do we need to recruit and what is their size?

Part II:

– Participant randomised trial: with that number of participants, what power do we have to detect a given target difference between groups?

Part III:

- Interaction

Sample size project: aims

- Inform the design of future split-plot designs by calculating their power under a variety of scenarios in a statistical simulation
- Provide Stata tutorial to help other researchers calculate sample sizes for this design

Sample size project: methods

- Monte Carlo simulations (Stata 13)
- Estimate power to detect a certain effect size (small, medium or large) in each level of the split-plot design given a certain number of clusters
- Cluster size, intracluster correlation and interaction varied
- Type I error 5%

Sample size project: main results

- 1. When no interaction is present: straight forward sample size calculation for each level of the design
- 2. Most cases: C-RCT will drive the sample size but the decision depends on a number of variables (intracluster correlation, target differences, cluster size)

Sample size project: main results

- 3. Split-plot design might have sufficient power to detect interactions between interventions
 - Depending on the intracluster correlation, cluster size and number of clusters recruited as well as the interaction effect size

Conclusion

- Review of split-plot designs in healthcare:
 - Useful designs in implementation science
 - Scarcely used
- We provided guidance on the report of split-plot designs, including their CONSORT style diagrams

Conclusion

- Particularly useful to detect an interaction between interventions
- There is need to improve the reporting of sample sizes in these trials

Thank you for your attention!

If you have any further question please contact:

- Beatriz Goulão
- beatriz.goulao@abdn.ac.uk
- www.abdn.ac.uk/hsru
- * @hsru_aberdeen / @beagoulao

