Research Overview
!!We have Postdoc and PhD positions available in the lab, funded by the Wellcome Trust and by Cancer Research UK!!
Interested applicants please send CV to Anne Donaldson with an explanation of your interest in our research area and your related lab experience.
Human cells contain 1.8 metres of DNA in a nucleus only about 6 microns in diameter. During chromosome replication this entire length of DNA must be duplicated exactly once with perfect accuracy, so that the strands can be disentangled and precisely segregated to the daughter cells. The DNA is extremely vulnerable to damage during this process, and cells must deal with thousands of potentially lethal DNA damage events every single day. Members of the Donaldson lab investigate the molecular controls over DNA replication and damage repair. Understanding chromosome maintenance will suggest new therapeutic strategies in the fight against cancer, as well as illuminating the basic mechanisms at the heart of the cell division cycle.
The budding yeast S. cerevisiae provides an excellent model organism for studying the fundamentals of chromosome biology, because of the remarkable molecular genetics tools available for this system. DNA replication initiates at multiple sites on each chromosome called replication origins. We use molecular genetics to understand the processes of yeast DNA replication, which we then investigate in human cells. Using this approach we have discovered several molecular mechanisms of replication control that operate throughout eukaryotic cells.
Our focus of interest is understanding the molecular machinery controlling origin initiation, replication fork progression, and chromosome maintenance. We use a combination of advanced proteomic, biochemical, genomic and microscopy methods to investigate the cellular components that regulate these DNA replication and repair processes.