A new way to test for life on Mars

A new way to test for life on Mars

Space scientists have discovered a new process to test for life on Mars and on Earth, using cutting-edge technology to sequence DNA using the tiniest possible sample of DNA mass.

The researchers from the University of Aberdeen’s Department of Planetary Sciences used a MinION DNA sequencer developed by Oxford Nanopore Technologies to detect microorganisms present in tiny amounts of terrestrial soils, and to investigate how they replicate in ambient conditions.

As a result, they have designed a procedure that can detect and characterise soil DNA with as little as 2 picogram of DNA mass (the genome of a single cell of a hummingbird has one picogram of DNA).

The discovery has important implications for studying rock and soil samples taken from Martian and terrestrial landscapes to see if they contain traces of DNA needed to support microbial life.

PhD student Jyothi Basapathi Raghavendra produced the research under the supervision of Professors Javier Martin-Torres and Maria-Paz Zorzano. The research has been published in the journal Scientific Reports.

Professor Martin-Torres said: “There is a slim chance that microbial life exists on Mars today but to find it we need to operate at the sample scale, and that’s where the size and power of the hardware that’s used in space exploration is a crucial factor.

“Using the MinION which offers portability with state-of-the-art technology, we carried out experiments in our clean lab which ensures that testing isn’t affected by background contamination.

“In doing so we successfully found the lowest DNA detection limit of the MinION which proves its value as a powerful tool for searching for microbial life in samples taken from planetary environments.

“This creates exciting possibilities for Martian research, as the size and power of the MinION makes it an ideal candidate for deployment in future exploration missions, using the process we have developed.

“In addition, it could be used in inhospitable environments on Earth such as desert or polar regions, as well as for applications in medicine, pharmacy and chemistry where biological contamination is undesirable.”

Clive Brown, Chief Technology Officer, of Oxford Nanopore said: “Space science offers an important landscape for pushing the capabilities of the Oxford Nanopore platform. This work builds evidence for ultra-low inputs, an important step forward. Sequencing technology could be adapted for extreme applications such as Mars — and beyond — providing the tools needed to study the extra-terrestrial samples. We aim to push the technology even further for when the Mars Sample Return mission returns in 2033.”

Search News

Browse by Month

2024

  1. Jan
  2. Feb
  3. Mar
  4. Apr
  5. May
  6. Jun
  7. Jul
  8. Aug There are no items to show for August 2024
  9. Sep There are no items to show for September 2024
  10. Oct There are no items to show for October 2024
  11. Nov There are no items to show for November 2024
  12. Dec There are no items to show for December 2024

2020

  1. Jan
  2. Feb
  3. Mar
  4. Apr There are no items to show for April 2020
  5. May
  6. Jun
  7. Jul
  8. Aug
  9. Sep
  10. Oct
  11. Nov
  12. Dec

2019

  1. Jan
  2. Feb
  3. Mar There are no items to show for March 2019
  4. Apr
  5. May
  6. Jun
  7. Jul
  8. Aug
  9. Sep
  10. Oct
  11. Nov
  12. Dec

2018

  1. Jan
  2. Feb There are no items to show for February 2018
  3. Mar
  4. Apr
  5. May
  6. Jun
  7. Jul
  8. Aug
  9. Sep
  10. Oct
  11. Nov
  12. Dec

2017

  1. Jan
  2. Feb
  3. Mar
  4. Apr
  5. May
  6. Jun
  7. Jul There are no items to show for July 2017
  8. Aug
  9. Sep There are no items to show for September 2017
  10. Oct
  11. Nov
  12. Dec

2016

  1. Jan
  2. Feb
  3. Mar
  4. Apr There are no items to show for April 2016
  5. May
  6. Jun There are no items to show for June 2016
  7. Jul
  8. Aug There are no items to show for August 2016
  9. Sep
  10. Oct
  11. Nov
  12. Dec There are no items to show for December 2016

2015

  1. Jan
  2. Feb
  3. Mar
  4. Apr
  5. May
  6. Jun
  7. Jul
  8. Aug
  9. Sep
  10. Oct There are no items to show for October 2015
  11. Nov
  12. Dec

2013

  1. Jan
  2. Feb
  3. Mar
  4. Apr There are no items to show for April 2013
  5. May
  6. Jun
  7. Jul
  8. Aug
  9. Sep
  10. Oct
  11. Nov
  12. Dec There are no items to show for December 2013

2012

  1. Jan
  2. Feb There are no items to show for February 2012
  3. Mar
  4. Apr
  5. May
  6. Jun
  7. Jul
  8. Aug
  9. Sep
  10. Oct
  11. Nov
  12. Dec There are no items to show for December 2012

2011

  1. Jan There are no items to show for January 2011
  2. Feb
  3. Mar
  4. Apr
  5. May
  6. Jun
  7. Jul There are no items to show for July 2011
  8. Aug
  9. Sep
  10. Oct
  11. Nov
  12. Dec

2010

  1. Jan There are no items to show for January 2010
  2. Feb There are no items to show for February 2010
  3. Mar There are no items to show for March 2010
  4. Apr There are no items to show for April 2010
  5. May There are no items to show for May 2010
  6. Jun There are no items to show for June 2010
  7. Jul There are no items to show for July 2010
  8. Aug
  9. Sep
  10. Oct There are no items to show for October 2010
  11. Nov
  12. Dec There are no items to show for December 2010

2009

  1. Jan There are no items to show for January 2009
  2. Feb There are no items to show for February 2009
  3. Mar
  4. Apr There are no items to show for April 2009
  5. May There are no items to show for May 2009
  6. Jun There are no items to show for June 2009
  7. Jul There are no items to show for July 2009
  8. Aug There are no items to show for August 2009
  9. Sep There are no items to show for September 2009
  10. Oct There are no items to show for October 2009
  11. Nov There are no items to show for November 2009
  12. Dec There are no items to show for December 2009