Coastal hydraulics

In this section
Coastal hydraulics

Tom O'Donoghue , Dominic van der A , Zaibin Lin

Our research in coastal hydraulics focusses on understanding the hydrodynamic processes as waves approach the shore and interact with seabed sediments, mane-made structures and with coastal vegetation. Our main goal is to advance our knowledge of the fundamental processes in order to develop better understanding and predictive tools for enhanced design and management of natural and engineered coastal systems. Specific topics that we focus are oscillatory boundary layer flow, swash zone processes, breaking wave hydrodynamics, and wave-structure interaction. We apply a range of methodologies and tools, including laboratory experiments in our own and overseas state-of-the-art facilities, analytical modelling, and Computational Fluid Dynamics.

Recent external projects

2018-2022 Bed shear stress under sea waves. Carnegie Trust for the Universities of Scotland, UK (Dunbar, D, van der A, D.A, O'Donoghue, T., Scandura, P. PhD studentship Danny Dunbar)
2019-2020 High-resolution force measurement for wave-vegetation interaction research, Royal Society Research Grant, UK (van der A, D., £19.9k).
2016-2018 Hydrodynamics under breaking wave conditions (HYBRID), Hydralab Plus (EU-H2020), (van der A, D.A., 35 days access to large-scale wave flume at UPC in Barcelona), collaboration with Un. Liverpool, Un. Hull, Un. Catania, Un. Messina, Utrecht University, LEGI (Grenoble), Danish Technical University.
2012-2016 Sand transport induced by Irregular and Breaking Wave Conditions (SINBAD), EPSRC, UK (O'Donoghue, T & van der A, DA, £606k), collaborative project with University of Twente, Netherlands, funded by STW

Recent PhD projects

2022 Dr Danny Dunbar Turbulent oscillatory flow over an irregular rough wall
2022 Dr Otto Neshamar Hydrodynamics of oscillatory flow over an array of cylinders
2017 Dr Panos Skarlas Oscillatory ow hydrodynamics and forces for a bottom-mounted horizontal cylinder over smooth and rough beds up to high KC
2017 Dr Mahesa Bhawanin Hydrodynamics and sand transport under regular and amplitude-modulated oscillatory flows

Selected papers

  • Dunbar, D., van der A, D.A., Scandura, P., O'Donoghue, T. (2023). An experimental and numerical study of turbulent oscillatory flow over an irregular rough wall. Journal of Fluid Mechanics, 955, A33.
  • Dunbar, D., van der A, D.A., O'Donoghue, T., Scandura, P. (2023). A practical empirical model for rough turbulent oscillatory boundary layer kinematics. Coastal Engineering, 179, 104242
  • Neshamar, O., van der A, D.A., O'Donoghue, T. (2022). Flow-induced vibration of a cantilever cylinder in oscillatory flow at high KC. Journal of Fluids and Structures, 109, 103476
  • O'Donoghue, T., Davies, A.G., Bhawanin, M., van der A, D.A. (2021). Measurement and prediction of bottom boundary layer hydrodynamics under modulated oscillatory flows. Coastal Engineering, 169, 103954.
  • Larsen, B.E., van der A, D.A., van der Zanden, J., Ruessink, B.G., Fuhrman, D.R. (2020). Simulation of surf zone kinematics and boundary layer processes over a breaker bar using a stabilized RANS model. Ocean Modelling, 155, 101705.
  • van der Zanden, J., van der A, D.A., Cáceres, I., Eltard Larsen, B., Fromant, G., Petrotta, C., Scandura, P., Li, M. (2019). Spatial and temporal distributions of turbulence under bichromatic breaking waves. Coastal Engineering, 146, 65-80.
  • Jacobsen, N.G., McFall, B., van der A, D.A. (2019). A frequency distributed dissipation model for canopies. Coastal Engineering, 150, 135-146.
  • van der A, D.A., Scandura, P., O'Donoghue, T. (2018). Turbulence statistics in smooth bed oscillatory boundary layer flow, Journal of Fluid Mechanics, 849, 192-230.
  • van der Zanden, J., van der A, D.A., O'Donoghue, T., Cáceres, I., Hurther, D., McLelland, S.J.M., Ribberink, J.S. (2018). Near-bed turbulent kinetic energy budget under a large-scale plunging wave, Journal of Geophysical Research - Oceans, 123(2), 1429-1456.
  • Zheng, P., Li, M., van der A, D.A., van der Zanden, J., Wolf, J., Chen, X. (2017). A 3D unstructured grid nearshore hydrodynamic model based on the vortex force formalism, Ocean Modelling, 116, 48-69.
  • van der A, D.A., van der Zanden, J., O'Donoghue, T., J., Hurther, D., Cáceres, I., McLelland, S.J.M., Ribberink, J.S. (2017). Large-scale laboratory study of breaking wave hydrodynamics over a fixed bar, Journal of Geophysical Research - Oceans, 122(4), 3287-3310.
  • van der Zanden, J., van der A, D.A., Hurther, D., Cáceres, I., O'Donoghue, T., Ribberink, J.S., (2016). Near-bed hydrodynamics and turbulence below a large-scale plunging breaking wave over a mobile barred bed profile, Journal of Geophysical Research - Oceans, 121(8), 6482-6506
  • Kikkert, G., Pokrajac, D., O'Donoghue, T., Steenhauer, K. (2013). Experimental study of bore-driven swash hydrodynamics on permeable rough slopes, Coastal Engineering, 79, 42-56.
  • Steenhauer, T., Pokrajac, D., O'Donoghue, T. (2012). Numerical model of swash motion and air entrapment within coarse-grained beaches, Coastal Engineering, 64, 113-126.