Introduction
Physics at Aberdeen takes you on a fascinating journey of understanding through every level of the physical world, from quarks, atoms and molecules to solar systems, galaxies and the universe. We will explore questions as vast as how the universe has evolved into its present state and cover topics such as the quantum nature of reality and other fascinating topics like thermodynamics and entropy.
Study Information
At a Glance
- Learning Mode
- On Campus Learning
- Degree Qualification
- BSc
- Duration
- 48 months
- Study Mode
- Full Time
- Start Month
- September
- UCAS Code
- F300
- Pathway Programme Available
- Undergraduate Foundation Programme
We offer a stimulating environment for learning, with small class sizes and friendly staff that you will truly get to know well as you study here. Our overall aim is to build a solid foundation of physics knowledge and use that to teach you how to think differently about the world and learn the widely applicable problem-solving skills of a physicist.
Here, you will be taught by experts in both experimental and theoretical areas of physics. Our highly research-active staff's work also interfaces strongly with other disciplines, so you will learn how to apply your physics skills and knowledge to understanding problems in multiple fields, including the environment, the economy and medicine.
We have laboratory physics available at all four years of the degree, with a solid introduction to the skills required for experimental physics in our first-year labs, leading to ever more complex experiments and more freedom to pursue your own interests in the second and third year.
In fourth year, you may choose to undertake an experimental physics project - this year, this has included designing an in-vitro chip for studying heart disease, or constructing an optical tweezers.
Thanks to our connections with other disciplines we have offered other fourth year projects in medical physics, including MRI, and solid state chemistry and the study of anti-matter. We also have extremely strong expertise in computational modelling, and have projects modelling topics as diverse as patient flow through a hospital, the effects of chaos on network communications and the spread of disease.
What You'll Study
- Year 1
-
Compulsory Courses
- Getting Started at the University of Aberdeen (PD1002)
-
This course, which is prescribed for level 1 undergraduate students (and articulating students who are in their first year at the University), is studied entirely online, takes approximately 5-6 hours to complete and can be taken in one sitting, or spread across a number of weeks.
Topics include orientation overview, equality and diversity, health, safety and cyber security and how to make the most of your time at university in relation to careers and employability.
Successful completion of this course will be recorded on your Enhanced Transcript as ‘Achieved’.
- The Physical Universe A (PX1015)
-
15 Credit Points
Physics is the most fundamental of the sciences, and if we wish to better understand the nature and behaviour of the Universe, it is perhaps the best place to start. This course introduces the basic topics of Physics, from the sub-microscopic scale of electrons and atoms, to the orbits of the planets and stars, to the celestial mechanics of galaxies. It encompasses the work of Physicists like Isaac Newton, Albert Einstein, Marie Curie and Jocelyn Bell Burnell. If you’ve ever been curious about how the world works, you will hopefully find this course, typically well-regarded by students, interesting.
- Calculus 1 (MA1005)
-
15 Credit Points
Calculus is the mathematical study of change, and is used in many areas of mathematics, science, and the commercial world. This course covers differentiation, limits, finding maximum and minimum values, and continuity. There may well be some overlap with school mathematics, but the course is brisk and will go a long way quickly.
- Algebra (MA1006)
-
15 Credit Points
This course introduces the concepts of complex numbers, matrices and other basic notions of linear algebra over the real and complex numbers. This provides the necessary mathematical background for further study in mathematics, physics, computing science, chemistry and engineering.
- The Physical Universe B (PX1513)
-
15 Credit Points
Understanding electric and magnetic forces is of paramount importance for understanding the physical world. They are eventually responsible for the matter around us to self-organize (in solid, liquid and gas phases), with given structures, density, elastic properties, and so on. Furthermore, they are responsible for light emission and propagation across the space.
Already the first rudiments of electricity and magnetism will help to appreciate that they are two difference faces of the same coin: electromagnetism. This relationship is the first evidence of the possibility to build a unified description of the microscopic laws of the physical universe.
- Calculus II (MA1508)
-
15 Credit Points
The aim of the course is to provide an introduction to Integral Calculus and the theory of sequences and series, to discuss their applications to the theory of functions, and to give an introduction to the theory of functions of several variables.
This provides the necessary mathematical background for further study in mathematics, physics, computing science, chemistry and engineering.
Optional Courses
Select a further 45 credit points from courses of choice.
- Year 2
-
Our main programme concentrates on: Dynamical Phenomena, including oscillations and waves, Light Science, Practical Optics and Digital Electronics and an introduction to Quantum Mechanics and Relativity. You should take one advanced Mathematics course and have three courses on subjects of your own choice. Honours Physical Science students have a wider choice, with no Mathematics.
Compulsory Courses
- Light Science (PX2013)
-
15 Credit Points
For most of us, our perceptions are governed most strongly by our vision. We see because of light, but what is light? It’s been considered a particle, a wave, and in modern physics is somehow both. This course explores the fascinating physics of this phenomenon, at an elementary mathematical level suitable for non-science students. We’ll cover petrological microscopy, of interest to geologists, interference and diffraction, how colour works, see how polarisation can be applied in both scientific fields and every day life, and see how the photon can be used in devices in the increasing prevalent field known as photonics.
- Dynamical Phenomena (PX2015)
-
15 Credit Points
Understanding oscillatory and wavelike behaviour is of huge importance in comprehending how our natural world works. It seems that everything in nature has its own cycle, rhythm or oscillation. From planets revolving around the sun to waves on the sea, even fundamental particles are treated as waves in modern physics. Accessible to students with some knowledge of calculus, this course will explain the mathematics of this fascinating and important subject. Methods of solving the differential equations that describe waves and oscillatory phenomena will be explored, including numerical techniques.
- Practical Optics and Electronics (PX2505)
-
15 Credit Points
This 100% continuously assessed course explores two fundamental areas of physics. In electronics you will go from building simple circuits to designing complex logical architectures, using both real components and simulation software.
The optics half of the course explores various fascinating optical phenomena, some of which are practically applicable for geologists and many other scientific disciplines. The practicals elegantly demonstrate the fundamental properties of light.
- Relativity and Quantum Mechanics (PX2510)
-
15 Credit Points
In the 20th Century, Physics got strange, and this course sets out to explore the foundations of this modern approach. In Special Relativity we will look at the idea that time is not an absolute – that events can happen in different times for different observers – and explore the effects of travelling at close to the speed of light. The quantum mechanics section introduces some of the most exciting and dramatically successful science of all time, and discuss the evolution of this idea from the days of Schrodinger’s cat to quantum tunnelling.
- Computational Methods in Physics (PX2016)
-
15 Credit Points
This course introduces computational methods in Physics. It consists of an introduction to programming, starting at basics such as variables, loops and conditional statements. This course is taught in Python, with an emphasis on modern programming concepts and data analysis skills.
Optional Courses
Select one 15 credit Level 2 Mathematics (MA) course, plus a further 30 credit points from courses of choice.
- Year 3
-
You will cover a mixture of fundamental topics, applied subjects and general interest areas such as Astrophysics and Particle Physics. We place particular emphasis on learning skills that professional scientists need to apply their knowledge.
Compulsory Courses
- Energy and Matter (PX3014)
-
15 Credit Points
Our world is made of three types of matter, Solids, Liquids and Gases. The first part of this course will explore the physical properties of these forms of matter and investigate important technological phenomena such as the flow of liquids and the causes of catastrophic failure in mechanical components. In the second half of the course, the nature of heat energy in matter will be explored. Thermodynamic behaviour will be understood in terms of Entropy and the operation of engines and their theoretical efficiency limitations will be explained.
- Introduction to the Solid State (PX3016)
-
15 Credit Points
The course is based on modern views on the structure of solids, how that structure is determined by X-ray crystallography and the basics of structure-property relationships. This involves learning the language of the basic shapes and symmetry displayed by crystals, then using that within the interdisciplinary subject of X-ray crystallography, source of many Nobel prizes and great advance in Physics, Chemistry, Materials Science, Biology and Medicine. The course then briefly examines some key topics including semiconductors, defects and amorphous materials.
- Advanced Practical Physics (PX3510)
-
15 Credit Points
Theories of the physical world around us must be consistent with nature. This can be checked by experiment and indeed unexpected experimental results can lead to the development of new theories. This course offers the opportunity to test theories in optics, electromagnetism, thermodynamics and materials science by experiment. You will learn how to carry out experiments, analyse your data and present your results both in writing and verbally. You will get the opportunity to work with Michelson interferometers, sensors, instrumentation and computers. This course supports your physics lectures and prepares you for an experimental scientists work after university.
- Quantum Mechanics (PX3511)
-
15 Credit Points
The course aims to provide the students with the underpinning knowledge that will enable them to think constructively about phenomena that relate to the quantum structure of matter. It is intended that the students will gain a broad appreciation of the hierarchy of interactions that give rise to the energy levels of atoms and the consequent structure of the associated spectroscopic transitions. In comparison to the previous years more emphasis will be put on the general, mathematical structure of quantum theory, tackling topics such as Hilbert spaces and time independent perturbation theory.
- Electricity and Magnetism (PX3512)
-
15 Credit Points
We are surrounded by electromagnetic phenomena; it is not possible to understand the physical world without them. In this course we will discuss the link between electricity and magnetism, noticing that changing electric magnetic fields generate electric fields and the other way around. This will lead to the introduction of Faraday’s law, hugely relevant to understand how we generate electricity, and to the introduction of Maxwell’s correction to Ampere’s law, which will lead to the astounding result that light is an electromagnetic wave! We will finish the course by exploring how electromagnetic waves propagate and how they are originated.
- Mathematical Methods in Physics (PX3020)
-
15 Credit Points
This course introduces key mathematical methods required in more advanced physics courses. The mathematical methods introduced in this course will be key to understand courses such as Electricity and Magnetism, Quantum Mechanics and Statistical Physics. The importance of the mathematical and computational methods discussed in this course goes beyond being useful for other physics courses, as they will provide you with key analytical tools to approach a large variety of problems, also relevant for your career after University.
- Optics and Photonics (PX3021)
-
15 Credit Points
This course gives an overview of a optical physics, spanning the classical ideas of geometrical optics through to modern photonic devices such as lasers that are quantum mechanical in nature. It touches on a number of wave phenomena such as optical polarisation and how optics is fundamentally linked to the powerful mathematical tool of Fourier theory. Through a range of examples, the course will illustrate how optics is used in the modern world, from microscopes to telecommunications.
Optional Courses
PX4510 - Structure of Matter and the Universe OR PX4516 - Nuclear and Semiconductor Physics
Select a further 15 credit points from courses of choice.
- Year 4
-
Compulsory Courses
- Project (PX4013)
-
45 Credit Points
PX4013 provides the opportunity to carry out an independent, open-ended, piece of research work. This can be in an area of physics (astronomy, nuclear physics, superconductors, dynamical systems etc.) or in related subjects where physicists tools can be applied (generation of proteins, biomechanics, infectious diseases etc.). The project can be dissertation based, practical or computational. You will develop: presentation skills; experience of reading and thinking about a specialist topic in depth; critical analysis skills of your own and other people’s scientific work and project management skills. This will help prepare for your future career beyond university.
- Case Studies in Physical Sciences (PX4007)
-
15 Credit Points
Whatever career you end up in, group working skills will be critical, and this course is designed to develop them. It is 100% continuously assessed and consists of some initial teamwork training, followed by two very different projects. One explores PET scanning and is taught by Professor Andy Welch, who is in charge of the medical imaging unit at Foresterhill. The other is about fibre optics communications and is taught by Dr. Ross Macpherson. These open-ended projects will give you some less prescriptive assessment in your final year.
- Statistical Physics and Stochastic Systems (PX4012)
-
15 Credit Points
Statistical physics derives the phenomenological laws of thermodynamics from the probabilistic treatment of the underlying microscopic system. Statistical physics, together with quantum mechanics and the theory of relativity, is a cornerstone in our modern understanding of the physical world.
Through this course, you will gain a better understanding of fundamental physical concepts such as entropy and thermodynamic irreversibility, and you will learn how derive some simple thermodynamic properties of gases and solids.
The final part of the course is devoted to an introduction to stochastic systems, which are widely used in many different fields such as physics, biology and economics.
Optional Courses
PX4510 - Structure of Matter and the Universe OR PX4516 - Nuclear and Semiconductor Physics OR PX4514 - Modelling Theory
Select 30 credit points, including 15 from Level 4 courses within your discipline and a further 15 from courses of choice.
- Modelling Theory (PX4514)
-
15 Credit Points
This course was designed to show you what you can do with everything you learnt in your degree. We will use mathematical techniques to describe a fast variety of “real-world” systems: spreading of infectious diseases, onset of war, opinion formation, social systems, reliability of a space craft, patterns on the fur of animals (morphogenesis), formation of galaxies, traffic jams and others. This course will boost your employability and it will be exciting to see how everything you learnt comes together.
- Structure of Matter and the Universe (PX4510)
-
15 Credit Points
The first half of this course provides a detailed understanding of the origin of our Universe and the equations that describe its evolution. The creation of galaxies, stars - their structure, fusion processes and life cycles will be explored along with the formation of the planets. In the second half, the fundamental nature of matter will be investigated and theoretical techniques such as Lagrangians used to understand fields. Gauge field theory as an explanation of the fundamental forces of nature and the standard model will be explained.
We will endeavour to make all course options available. However, these may be subject to change - see our Student Terms and Conditions page.
How You'll Study
Learning Methods
- Group Projects
- Individual Projects
- Lab Work
- Lectures
- Research
- Tutorials
Assessment Methods
Students are assessed by any combination of three assessment methods:
- coursework such as essays and reports completed throughout the course;
- practical assessments of the skills and competencies learnt on the course; and
- written examinations at the end of each course.
The exact mix of these methods differs between subject areas, year of study and individual courses.
Honours projects are typically assessed on the basis of a written dissertation.
Why Study Physics?
- We are ranked 6th in the UK for Physics - The Guardian University Guide 2024
- We are ranked 2nd in Scotland for Overall Satisfaction - NSS 2023
- Our BSc Physics degree is accredited by the Institute of Physics.
- The Department of Physics at the University of Aberdeen has a long and illustrious history. Notable former staff include James Clerk Maxwell, who is widely regarded as one of the greatest scientists who have ever lived due to his revolutionary work on electricity, magnetism, and optics and GP Thomson who won the Nobel Prize in Physics in 1921
- The Physics and Astronomy Society is open to any students with an interest in physics or astronomy and organises a series of talks, experimental sessions, astronomy nights, trips, game nights, and numerous social outings.
- Physics at Aberdeen is strongly interdisciplinary, bridging gaps between abstract concepts and 'real world' applications in the scientific, engineering, medical and social fields. The Institute for Complex Systems and Mathematical Biology (ICSMB), for example, devotes special effort to applying mathematical modelling skills to understanding problems in the life sciences such as epidemiology or systems biology.
Aberdeen Global Scholarship
The University of Aberdeen is delighted to offer eligible self-funded international on-campus undergraduate students a £6,000 scholarship for every year of their programme.
View the Aberdeen Global ScholarshipEntry Requirements
Qualifications
The information below is provided as a guide only and does not guarantee entry to the University of Aberdeen.
General Entry Requirements
- 2024 Entry
-
SQA Highers
Standard: AABB*
Applicants who have achieved AABB (or better), are encouraged to apply and will be considered. Good performance in additional Highers/ Advanced Highers may be required.
Minimum: BBB*
Applicants who have achieved BBB (or are on course to achieve this by the end of S5) are encouraged to apply and will be considered. Good performance in additional Highers/Advanced Highers will normally be required.
Adjusted: BB*
Applicants who have achieved BB, and who meet one of the widening access criteria are are guaranteed a conditional offer. Good performance in additional Highers/Advanced Highers will be required.
* Including good performance in Mathematics and Physics by the end of your senior phase of education.
More information on our definition of Standard, Minimum and Adjusted entry qualifications.
A LEVELS
Standard: BBB*
Minimum: BBC*
Adjusted: CCC*
* Including good performance in Mathematics and Physics by the end of your senior phase of education.
More information on our definition of Standard, Minimum and Adjusted entry qualifications.
International Baccalaureate
32 points, including 5, 5, 5 at HL, including HL in Mathematics and Physics.
Irish Leaving Certificate
5H with 3 at H2 AND 2 at H3, Including H3 in Mathematics and Physics.
- 2025 Entry
-
SQA Highers
Standard: BBBB*
Applicants who have achieved BBBB (or better), are encouraged to apply and will be considered. Good performance in additional Highers/ Advanced Highers may be required.
Minimum: BBC
Applicants who have achieved BBC at Higher and meet one of the widening participation criteria above are encouraged to apply and are guaranteed an unconditional offer for MA, BSc and BEng degrees.
Adjusted: BB
Applicants who have achieved BB at Higher, and who meet one of the widening participation criteria above are encouraged to apply and are guaranteed an adjusted conditional offer for MA, BSc and BEng degrees.
We would expect to issue a conditional offer asking for one additional C grade at Higher.
Foundation Apprenticeship: One FA is equivalent to a Higher at A. It cannot replace any required subjects.
* Including good performance in Mathematics and Physics by the end of your senior phase of education.
More information on our definition of Standard, Minimum and Adjusted entry qualifications.
A LEVELS
Standard: BBC*
Minimum: BCC*
Adjusted: CCC*
* Including good performance in Mathematics and Physics by the end of your senior phase of education.
More information on our definition of Standard, Minimum and Adjusted entry qualifications.
International Baccalaureate
32 points, including 5, 5, 5 at HL, including HL in Mathematics and Physics.
Irish Leaving Certificate
5H with 3 at H2 AND 2 at H3, Including H3 in Mathematics and Physics.
The information displayed in this section shows a shortened summary of our entry requirements. For more information, or for full entry requirements for Sciences degrees, see our detailed entry requirements section.
English Language Requirements
To study for an Undergraduate degree at the University of Aberdeen it is essential that you can speak, understand, read, and write English fluently. The minimum requirements for this degree are as follows:
IELTS Academic:
OVERALL - 6.0 with: Listening - 5.5; Reading - 5.5; Speaking - 5.5; Writing - 6.0
TOEFL iBT:
OVERALL - 78 with: Listening - 17; Reading - 18; Speaking - 20; Writing - 21
PTE Academic:
OVERALL - 59 with: Listening - 59; Reading - 59; Speaking - 59; Writing - 59
Cambridge English B2 First, C1 Advanced or C2 Proficiency:
OVERALL - 169 with: Listening - 162; Reading - 162; Speaking - 162; Writing - 169
Read more about specific English Language requirements here.
International Applicants who do not meet the Entry Requirements
The University of Aberdeen International Study Centre offers preparation programmes for international students who do not meet the direct entry requirements for undergraduate study. Discover your foundation pathway here.
Fees and Funding
You will be classified as one of the fee categories below.
Fee category | Cost |
---|---|
RUK | £9,250 |
Tuition Fees for 2025/26 Academic Year | |
EU / International students | £24,800 |
Tuition Fees for 2025/26 Academic Year | |
Home Students | £1,820 |
Tuition Fees for 2025/26 Academic Year |
Additional Fees
- In exceptional circumstances there may be additional fees associated with specialist courses, for example field trips. Any additional fees for a course can be found in our Catalogue of Courses.
- For more information about tuition fees for this programme, including payment plans and our refund policy, please visit our Tuition Fees page.
Scholarships and Funding
UK Scholarship
Students from England, Wales and Northern Ireland, who pay tuition fees may be eligible for specific scholarships allowing them to receive additional funding. These are designed to provide assistance to help students support themselves during their time at Aberdeen.
Aberdeen Global Scholarship
The University of Aberdeen is delighted to offer eligible self-funded international on-campus undergraduate students a £6,000 scholarship for every year of their programme. More about this funding opportunity.Funding Database
View all funding options in our Funding Database.
Careers
Physics is widely seen as a highly numerate and technical degree, so general employment prospects are excellent. The comprehensive expertise of the Physics staff at Aberdeen means you will be in an excellent position to pursue postgraduate opportunities in a huge variety of fields.
We have graduates working in particle physics at CERN, in the business and finance sectors, teaching, and even generating weather forecasts. Many graduates become professional scientists in industry, research institutes and universities.
The skills you learn here in quantitative and data analysis are highly valued in numerous sectors outside of science, including banking and finance, where such graduates are highly valued and remunerated.
According to the What Do Graduates Do? 2023 survey, Physics graduates had the highest level of employment in graduate jobs (85%} and also commanded the highest salaries for science graduates (£28,116).
Typical roles taken up by physics graduates include:
- Astronomer
- Clinical Scientist (medical physics)
- Data Scientist
- Financial Analyst
- Geophysicist
- Metallurgist
- Meteorologist
- Nanotechnologist
- Nuclear Scientist
- Researcher
- Software Engineer
Our BSc Physics degree is accredited by the Institute of Physics (IOP} which means the programme satisfies the academic requirements for IOP membership, and provides a route to Registered Scientist (RSci}, Chartered Physicist (CPhys) and Chartered Scientist (CSci}.
Accreditation
This degree holds accreditation from
What our Alumni Say
Our Experts
Information About Staff Changes
You will be taught by a range of experts including professors, lecturers, teaching fellows and postgraduate tutors. However, these may be subject to change - see our Student Terms and Conditions page.
Features
Learn from world-class experts
Example - Congratulations to Professor Norval Strachan, Head of Physics at the University of Aberdeen, who has been appointed as Food Standards Scotland's first Chief Scientific Adviser.
Find out morePhysics and Astronomy Student Society
We aim to hold social events through the year including: lectures, film nights, quizzes, revision sessions, stargazing and of course. Meet new people with similar interests, learn physics and most importantly have lots of fun.
Find out moreDiscover Uni
Discover Uni draws together comparable information in areas students have identified as important in making decisions about what and where to study. You can compare these and other data for different degree programmes in which you are interested.
Get in Touch
Contact Details
- Address
-
Student Recruitment & Admissions
University of Aberdeen
University Office
Regent Walk
Aberdeen
AB24 3FX