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Dietary restriction increases skeletal muscle mitochondrial respiration but not
mitochondrial content in C57BL/6 mice
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A B S T R A C T

Dietary restriction (DR) is suggested to induce mitochondrial biogenesis, although recently this has been

challenged. Here we determined the impact of 1, 9 and 18 months of 30% DR in male C57BL/6 mice on key

mitochondrial factors and on mitochondrial function in skeletal muscle, relative to age-matched ad

libitum (AL) controls. We examined proteins and mRNAs associated with mitochondrial biogenesis and

measured mitochondrial respiration in permeabilised myofibres using high resolution respirometry. 30%

DR, irrespective of duration, had no effect on citrate synthase activity. In contrast, total and nuclear

protein levels of PGC-1a, mRNA levels of several mitochondrial associated proteins (Pgc-1a, Nrf1, Core 1,

Cox IV, Atps) and cytochrome c oxidase content were increased in skeletal muscle of DR mice.

Furthermore, a range of mitochondrial respiration rates were increased significantly by DR, with DR

partially attenuating the age-related decline in respiration observed in AL controls. Therefore, DR did not

increase mitochondrial content, as determined by citrate synthase, in mouse skeletal muscle. However, it

did induce a PGC-1a adaptive response and increased mitochondrial respiration. Thus, we suggest that a

functionally ‘efficient’ mitochondrial electron transport chain may be a critical mechanism underlying

DR, rather than any net increase in mitochondrial content per se.

� 2011 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

It is well established that dietary restriction (DR) robustly
extends healthy lifespan in most organisms (Masoro, 2009;
Weindruch and Walford, 1988), with health benefits seen in both
non-human primates (Colman et al., 2009) and humans (Fontana
et al., 2004, 2007). Whilst the effects of DR on healthy lifespan are
clear, it is still uncertain as to what is the mechanism in driving these
effects, although many putative mechanisms have been proposed
(Gesing et al., 2011; Mair and Dillin, 2008; Masoro, 2009). One
prominent candidate mechanism is mitochondrial biogenesis
(Lopez-Lluch et al., 2006, 2008; Nisoli et al., 2005). DR has been
shown to alter several molecular markers indicative of mitochon-
drial biogenesis in different organisms. These include increased
mitochondrial DNA content, increased expression of mitochondrial
associated genes (e.g. peroxisome proliferator-activated receptor
Abbreviations: DR, dietary restriction; AL, ad libitum; FI, food intake; BM, body

mass; CS, citrate synthase; COX IV, cytochrome c oxidase; HRR, high resolution

respirometry; BIOPS, biopsy preservation solution; PGC-1a, peroxisome prolif-

erator-activated receptor gamma co-activator; ETS, electron transport system;

OXPHOS, oxidative phosphorylation.

* Corresponding author at: Integrative and Environmental Physiology, Institute

of Biological and Environmental Sciences, University of Aberdeen, Tillydrone

Avenue, Aberdeen AB24 2TZ, UK. Tel.: +44 01224 272399; fax: +44 01224 272396.

E-mail address: c.selman@abdn.ac.uk (C. Selman).

0047-6374/$ – see front matter � 2011 Elsevier Ireland Ltd. All rights reserved.

doi:10.1016/j.mad.2011.12.002
gamma co-activator (Pgc-1a), nuclear respiratory factor-1 (Nrf-1),
mitochondrial transcription factor A (Tfam)), and increased cyto-
chrome c oxidase (COX IV) and cytochrome c protein levels in a range
of mouse tissues (Nisoli et al., 2005). Mitochondrial biogenesis has
also been reported in human skeletal muscle following DR, with
increased mitochondrial DNA content and expression of several
mitochondrial related genes reported, although citrate synthase (CS)
and COX IV activities were unchanged (Civitarese et al., 2007).
Critically, it appears that mitochondrial function may adapt to DR
through PGC-1a regulation (Anderson et al., 2008), and age-related
declines in both skeletal muscle and heart Pgc-1a in ad libitum (AL)
rats have been shown to be attenuated by DR (Hepple et al., 2006).

Whilst mitochondrial biogenesis is widely accepted as a cellular
response to DR, this belief has recently been challenged. Hancock
et al. (2011) reported no effect on PGC-1a protein or in mRNA levels
of several mitochondrial associated genes in triceps muscle, heart or
liver of DR male Wistar rats. In addition, whilst DR increased Pgc1-a
mRNA levels significantly in liver and skeletal muscle (but not heart)
of male B6D2F1 mice, it had no effect on PGC-1a protein levels or on
mRNA of Nrf-1, Tfam and various mitochondrial proteins (Miller
et al., 2011). CS activity in liver, heart and skeletal muscle, a
mitochondrial matrix protein used as a marker of mitochondrial
content, was also unaffected by DR (Hancock et al., 2011). Similarly,
DR had no effect on CS activity in skeletal muscle of rats (Sreekumar
et al., 2002) and was reduced in liver of DR mice (Weindruch et al.,
1980), although other studies have reported DR-induced increases
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(e.g. Lopez-Lluch et al., 2006). At the functional level, the effects of DR
on mitochondria are also ambiguous. Reduced mitochondrial
respiration, primarily state 4, was reported in isolated mitochondria
from both rats (Bevilacqua et al., 2004, 2005; Sohal et al., 1994) and
mice (Lal et al., 2001; Weindruch et al., 1980) following DR. In an
elegant study, Lopez-Lluch et al. (2006) demonstrated that HeLa
cells incubated in serum derived from DR rats had decreased
mitochondrial respiration, lower membrane potential, increased
proton leak and reduced reactive oxygen species (ROS) production.
In addition, no effect on ATP production was reported, leading the
authors to suggest that DR leads to a state of bioenergetic efficiency
(Lopez-Lluch et al., 2006). However, state 4 respiration was
unaltered in several tissues from DR rats ((Gredilla et al., 2001;
Lambert et al., 2004b), and see also Bevilacqua et al., 2005). In
addition, state 3 respiration was increased in liver mitochondria
from DR mice (Weindruch et al., 1980), state 4 respiration increased
in brown adipose tissue from DR rats (Lambert et al., 2004a), and
total oxygen (O2) consumption was elevated in several tissues in DR
mice (Nisoli et al., 2005).

The precise reasons for these incongruous findings are unclear,
although gender-, strain- and species-specific differences may be
important (Hunt et al., 2006). In addition, the intensity, duration and
age of DR onset may be critical (Bevilacqua et al., 2005; Johnson et al.,
2006), as might tissue-specific responses to DR (Lambert et al.,
2004b; Miller et al., 2011; Zangarelli et al., 2006). Historically,
isolated mitochondria have been used to examine the effects of DR
and/or ageing on mitochondrial function. As discussed elsewhere
(e.g. Picard et al., 2010, 2011), the isolation methods themselves may
exaggerate mitochondrial phenotypes and may introduce experi-
mental artefacts by disrupting the complex cellular environment
experienced by mitochondria in vivo. Measurements of respiration
in permeabilised tissue using high resolution respirometry (HRR)
have recently been employed in an attempt to mitigate some of
these potentially confounding factors (Aragones et al., 2008; Boushel
et al., 2007; Picard et al., 2010; Rabol et al., 2009). It has been
suggested that this approach may help maintain mitochondrial
morphology and better reflect the in vivo conditions experienced by
mitochondria (Picard et al., 2010). Indeed, the age-related deteriora-
tions in skeletal muscle mitochondrial function observed in rats
appeared significantly exaggerated in isolated mitochondria when
compared to permeabilised myofibres (Picard et al., 2010).

In light of current uncertainty on exactly how DR and ageing
impact on mitochondrial biology, we examined firstly whether
mitochondrial biogenesis occurred in hindlimb (gastrocnemius)
skeletal muscle of male C57BL/6 mice following 1, 9 or 18 months of
30% DR (4, 12 or 21 months of age respectively). We hypothesised
that DR would induce adaptive changes to mitochondrial function
via PGC-1a (Anderson et al., 2008), leading to a predicted
attenuation of an age-related decline in mitochondrial function.
Our experimental design enabled us to examine both the effects of
DR and age, by comparing our DR animals to age-matched AL
controls. Skeletal muscle was studied as it is particularly prone to
age-related declines in its oxidative and functional capacities (Baker
et al., 2006; Hepple et al., 2005; Jang and Van Remmen, 2011;
Marzetti et al., 2009). Initially we determined the levels of several
key proteins and genes linked to mitochondrial biogenesis
(Anderson et al., 2008; Civitarese et al., 2007; Nisoli et al., 2005).
Secondly, we extended current knowledge by examining mitochon-
drial respiration in detail following DR and ageing using HRR in
permeabilised myofibres (Kuznetsov et al., 2008; Picard et al., 2010).

2. Materials and methods

2.1. Animals

Male C57BL/6N mice were purchased from a commercial breeder (Charles River

Laboratories, UK) at 4 weeks of age. Mice were maintained in pairs from 8 weeks of
age onwards in shoebox cages (48 cm � 15 cm � 13 cm). Initially all animals had ad

libitum (AL) access to water and standard chow (D12450B, Research Diets Inc., New

Brunswick, NJ, USA; protein 20 kcal%, carbohydrate 70 kcal%, fat 10 kcal%) and

maintained on a 12L/12D cycle (lights on 0700–1900 h) at 22 � 2 8C. At 10 weeks of

age, weight matched pairs were assigned to the AL or dietary restricted (DR) group,

with no difference in body mass observed between the experimental groups at this

time (AL = 25.1 � 0.5 g, DR = 25.3 � 0.5 g; F = 3.354; p = 0.137). Mice were then

maintained in these same pairs throughout the experiment. DR mice underwent an

incremental step-down protocol as previously described (Hempenstall et al., 2010;

Selman et al., 2006). In brief, daily food intake of DR mice was reduced to 90% of AL

levels at 10 weeks of age, 80% of AL levels at 11 weeks of age and held at 70% of AL levels

(30% DR) from 12 weeks of age onwards. Total food intake of paired AL mice was

measured weekly (�0.01 g) and 30% DR calculated from the average AL mice intake

over the preceding week. DR mice were fed daily between 1630 and 1730 h. No

evidence of hierarchies or fighting was seen between paired mice within a cage, as

previously reported by us (Selman et al., 2006) and others (e.g. Ikeno et al., 2005). DR

mice fed simultaneously at the hopper, with no evidence that one individual interfered

with the feeding of the other individual within a cage. Following 1, 9 or 18 months of

30% DR (equivalent to 4, 12 or 21 months of age), 8 mice per experimental group were

culled by cervical dislocation and the gastrocnemius (hindlimb) muscle was dissected

out. All experiments were carried out under local ethical review (University of

Aberdeen, UK), under a licence from the UK Home Office and followed the ‘‘principles of

laboratory animal care’’ (NIH Publication No. 86-23, revised 1985).

2.2. Citrate synthase activity and cytochrome c oxidase levels

Citrate synthase (a marker for mitochondrial content) activity was determined

spectrophotometrically following the protocol of Srere (Srere, 1969). Cytochrome c

oxidase (Complex IV) content was also determined spectrophotometrically, as

previously described (Balaban et al., 1996). All high resolution respiration

measurements were expressed as O2 flux (picomoles O2 per s�1 per mg wet

weight) and corrected for citrate synthase (CS) activity (Rabol et al., 2009, 2010).

2.3. Protein extraction

A portion of hindlimb muscle was powdered in liquid nitrogen and then

suspended in ice cold homogenisation buffer (0.25 M monobasic potassium

phosphate, 0.5 M EDTA, 0.5 M potassium chloride, 10% Triton X-100, 50% glycerol).

Protease inhibitor cocktail (Merck KGaA, Darmstadt, Germany) was added for each

sample (final concentration in 1 ml homogenisation buffer; 1 mM 4-(2-aminoethyl)

benzenesulfonyl fluoride hydrochloride, 8 mm aprotinin, 50 mm bestatin, 1.5 mm E-

64 protease inhibitor, 20 mm leupeptin, 10 mm pepstatin A). Samples were

vortexed, incubated on ice for 45 min, homogenised in three 15 s�1 pulses at

maximum setting using a polytron homogeniser (Fisher Scientific, Loughborough,

UK) and subsequently centrifuged for 10 min�1 (4 8C) at 9000 � g (PeqLab,

PerfectSpin, Erlangen, Germany). Nuclear and cytoplasmic isolation followed

previously published protocols (Cabelof et al., 2002; Thomashevski et al., 2004),

with protein concentration quantified by the Bradford method (Bradford, 1976).

2.4. Western blot analysis

Equal loading (20 mg) of muscle protein extract in Laemmli buffer were loaded

onto Tris–HCl acrylamide gels. Following resolution, proteins were transferred to

polyvinylidene difluoride membranes (PeqLab), using a semi-dry blotter (PeqLab).

Ponceau staining was used to ensure equal transfer (data not shown). Membranes

were incubated in Tris-buffered saline Tween 20 (TBST) containing 5% powdered

milk for 1 h�1. Blots were then washed in TBST (3 � 10 min�1), incubated with

primary antibody for 24 h�1 (4 8C), washed again (TBST) and incubated with

secondary antibody for 1 h�1 (room temperature). Blots were visualised using

enhanced chemiluminescent and HRT (Pierce Thermo Scientific, Rockford, IL, USA).

Primary (peroxisome proliferator-activated receptor-gamma co-activator 1 alpha

(PGC-1a), mitochondrial transcription factor A (TFAM)) and secondary (anti-rabbit)

were purchased from Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA).

2.5. Quantitative PCR

RNA extraction from muscle, quantitative-PCR (qPCR) and analysis was carried out

as previously described (Selman et al., 2006, 2008). Briefly, RNA was extracted using

TRIzol1 (Invitrogen, Life Technologies Ltd., Paisley, UK) and quantified spectrophoto-

metrically (Nanodrop ND-1000, Thermo Scientific, East Sussex, UK). RNA purity was

determined by the 260/280 and 260/230 ratios using a Nanodrop ND-1000, and by gel

electrophoresis. qPCR was carried out using KAPA SYBR fast qPCR universal

fluorescence dye (Anachem Ltd., Luton, UK) and Ct values were detected using the

Lightcycler 480 2.0 qPCR system (Roche, West Sussex, UK). Expression levels of Pgc-1a,

Atps, Nrf1, Cox IV and Complex III (for primer sequences see Table 1) were determined

(following melting curve analysis), as these genes are associated with mitochondrial

biogenesis (see Hancock et al., 2011; Nisoli et al., 2005). Changes in mRNA expression

levels were calculated as fold change expressed relative to transcription elongation

factor A (SII)-1 (Tcea1) using the delta-delta CT method. Tcea1 was selected as our

reference gene as its expression is unaffected by DR (Selman et al., 2006).
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Fig. 1. Citrate synthase activity was unaltered by DR in hindlimb skeletal muscle,

although activity levels were significantly altered by age. Values are expressed as

mean � SEM for N = 7 per group. Age effects aaap < 0.001.

Table 1
Primer sequences for qPCR.

Primer Sequence

Forward Reverse

Cox IV 50-CTGCCCGGAGTCTGGTAATG-30 50-CAGTCAACGTAGGGGGTCATC-30

Pgc-1a 50-TATGGAGTGACATAGAGTGTGCT-30 50-CCACTTCAATCCACCCAGAAAG-30

Nrf1 50-AGCACGGAGTGACCCAAAC-30 50-TGTACGTGGCTACATGGACCT-30

Atps 50-CCCCTTCTACGACCGCTAC-30 50CCACTGGCTGCTTTCGGAA-3

Complex III 50-CCTACAGCTTGTCGCCCTTT-30 50-GATCAGGTAGACCACTACAAACG-30

Tcea1 50-TGATGCTGTACGAAACAAATGCC-30 50-CCGCACCCGATTCTTGTACT-30
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2.6. Muscle permeabilisation

Gastrocnemius muscle was placed in ice-cold biopsy preservation solution

(BIOPS; pH 7.1). BIOPS contained 10 mmol/L Ca2+ ethylene glycol tetra-acetic acid,

0.1 mmol/L free calcium, 20 mmol/L imidazole, 50 mmol/L potassium 4-morpho-

spholinoethanesulfonic acid, 0.5 mmol/L dithiothreitol, 6.56 mmol/L magnesium

chloride, 5.77 mmol/L disodium-adenosine-triphosphate and 15 mmol/L phospho-

creatine. Connective tissue and fat was removed and then muscle bundles manually

teased apart and weighed using analytical scales. Fibre bundles were permeabilised

in BIOPS solution containing 0.05 mg/ml saponin, with gentle rocking following

previously described methods (Boushel et al., 2007; Kuznetsov et al., 2008; Picard

et al., 2010). After permeabilisation, fibres were placed in ice-cold respiration

medium (mitochondrial respiration medium #5; MiR05) for 10 min�1 prior to use

(Boushel et al., 2007).

2.7. High resolution respirometry

Mitochondrial respiration measurements were performed in duplicate on

permeabilised gastrocnemius muscle fibres using a polarographic oxygen sensor

(Oxygraph-2k, Oroboros1 Instruments GmbH Corp., Innsbruck, Austria). Standard

calibrations were performed to correct for residual background oxygen (O2) flux,

and then �5–10 mg (wet weight) permeabilised muscle fibres were added to one of

two glass respirometry chambers containing air-saturated MiR05 (37 8C). The

chambers were subsequently sealed to exclude oxygen exchange with the external

environment. Baseline respiration was determined initially and then O2 flux

measured using sequential titration of the following substrates. Glutamate

(19 mmol/L) and malate (1.5 mmol/L) were added to stimulate complex 1 driven

respiration, and then ADP (4.8 mmol/L) added to stimulate oxidative phosphoryla-

tion. Succinate (9.5 mmol/L) was then titrated to measure oxidative phosphoryla-

tion with convergent electron input from complexes I and II. Outer mitochondrial

membrane integrity was determined through addition of cytochrome c (19 mmol/L)

following the induction of convergent (maximal) oxidative phosphorylation

(Kuznetsov et al., 2004). Rotenone (0.1 mmol/L; complex I inhibitor) was added

to measure complex II driven oxidative phosphorylation. Carbonylcyanide p-

trifluoromethoxyphenylhydrazone (FCCP; 0.7 mmol/L) was added to induce

uncoupled respiration. Mitochondrial leak respiration was measured by adding

the ATP synthase inhibitor oligomycin (2 mg/ml) following glutamate and malate.

The respiration data is presented in the aforementioned sequence of titrations as

previously reported (Boushel et al., 2007), with the exception of LEAK respiration.

2.8. Statistical analysis

All statistical analyses were performed using SPSS (SPSS Inc., Armonk, NY, USA,

version 18) and GraphPad Prism (GraphPad Inc., La Jolla, CA, USA, version 5)

software. Data were checked for normality using the Shapiro–Wilks test, and

analysed using general linear modelling (GLM) with treatment (AL or CR) and age

(4, 12 or 21 months of age) introduced as fixed factors. All non-significant

interaction effects (p > 0.05) were removed to obtain the best-fit model in each

case, with only significant interactions reported. Post hoc Tukey tests were

performed to examine differences between age groups, although it should be noted

that these analyses do not take into account the treatment or treatment*age

interaction effects. Results are reported as mean � standard error of the mean (SEM),

with p < 0.05 regarded as statistically significant. Significant treatment effects are

denoted by tp < 0.05, ttp < 0.01, tttp < 0.001; and significant age effects denoted by
ap < 0.05, aap < 0.01, aaap < 0.001.

3. Results

DR mice were significantly lighter than AL mice at all time-
points (Fig. S1; F = 196.977, p < 0.001). A significant age-associated
increase in body mass was also observed in both groups
(F = 33.802, p < 0.001).

DR had no effect (F = 0.786, p = 0.381) on citrate synthase
(CS) activity (Fig. 1), implying that mitochondrial content
was unchanged. However, a significant age effect (F = 12.460,
p < 0.001; post hoc 4 month vs 12 month p = 0.001, 12 month vs 21
month p = 0.002) and significant treatment*age interaction were
observed (F = 5.431, p < 0.01).

Mice undergoing DR had significantly higher total peroxisome
proliferator-activated receptor g co-activator 1a (PGC-1a) protein
levels, the ‘master’ regulator of mitochondrial biogenesis, com-
pared to AL mice (Fig. 2A; F = 40.690, p < 0.001), although by 21
months of age this difference was lost. In addition, there was also a
highly significant age effect (F = 20.231, p < 0.001; post hoc 4
month vs 21 month p < 0.001, 12 month vs 21 month p < 0.001),
with levels in both groups decreased by 21 months of age and a
significant treatment*age interaction also observed (F = 18.407,
p < 0.001). As PGC-1a is a key transcriptional co-activator we also
examined both nuclear (Fig. 2B) and cytoplasmic (Fig. 2C) protein
levels. Nuclear PGC-1a levels were increased significantly by DR
(F = 25.373; p < 0.001), with, perhaps surprisingly, an age-related
increase (F = 17.556, p < 0.001; post hoc 4–21 month p = 0.001, 12
month vs 21 month p < 0.001). A treatment*age interaction was
also observed (F = 4.223, p < 0.05). Cytoplasmic PGC-1a levels
were unaffected by either treatment (F = 0.852, p = 0.362) or age
(F = 0.854, p = 0.434). The protein levels of mitochondrial tran-
scription factor A (TFAM), which regulates mitochondrial DNA
expression, was unaltered by DR (Fig. 2D; F = 0.723, p = 0.400), but
a highly significant age-related decline was seen in both AL and DR
mice (F = 9.740, p < 0.001; post hoc 4 month vs 12 month p = 0.005,
4 month vs 21 month p < 0.001). Fig. S2 shows representative blots
of total PGC-1a, nuclear PGC-1a, cytoplasmic PGC-1a, TFAM and
GAPDH.

The expression of Pgc-1a was significantly higher in DR mice
(Fig. 3A; F = 126.151, p < 0.001), with expression decreasing in an
age-related manner (F = 29.653, p < 0.001; post hoc 4 month vs 12
month p = 0.031, 4 month vs 21 month p < 0.001, 12 month vs 21
month p < 0.001), which was much more apparent in AL mice. This
different age-related pattern explained the significant treatmen-
t*age interaction (F = 5.027, p < 0.001). Similarly, DR significantly
increased the mRNA levels of Nrf1 (Fig. 3B; F = 39.443, p < 0.001)),
Core 1 (Complex 3; Fig. 3C; F = 45.651, p < 0.001), Cox IV ((Fig. 3D;
F = 51.700, p < 0.001) and mitochondrial Atps (Fig. 3E; F = 24.079,
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Fig. 2. DR increased PGC-1a protein levels in total (A), nuclear fraction (B), but not in the cytoplasmic (C) fraction, from mouse hindlimb skeletal muscle. DR had no effect on

TFAM levels, although a significant age-related decline was observed (D). Values for A–D are arbitrary units (AU) relative to GAPDH. Mice were 4, 12 or 21 months of age

(equivalent to 30% DR for 1, 9 or 18 months). All values are expressed as means � SEM for N = 8 per group. Treatment effects tttp < 0.001; age effects aaap < 0.001. Figure S2 shows

representative blots for A-D and for GAPDH.
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p < 0.001). Neither Nrf1 nor Atps showed any age-related change in
expression levels (F = 1.739, p = 0.188 and F = 0.676, p = 0.514
respectively), although a significant age effect was observed for
Core 1 (F = 7.169, p < 0.01; post hoc 4 month vs 12 month p = 0.002,
12 month vs 21 month p = 0.037) and Cox IV (F = 3.773, p < 0.05;
post hoc 12 month vs 21 month p = 0.024). Significant treatmen-
t*age interactions were detected for Nrf1 (F = 4.200, p < 0.05), Cox

IV (F = 3.768, p < 0.05), and Atps (F = 7.519, p < 0.01).
Mitochondrial respiration (Fig. 4A) in permeabilised gastroc-

nemius myofibres, in the resting state (without any substrate
addition) was significantly elevated in DR mice (F = 9.782,
p < 0.01), particularly at 21 months of age. A significant age effect
was also observed (F = 6.277, p < 0.01; post hoc 4 month vs 21
month p = 0.019, 12 month vs 21 month p = 0.006), with a clear
age-related increase in DR mice that was not apparent in AL mice
leading to a significant treatment*age interaction (F = 5.085,
p < 0.05). Leak respiration was also significantly increased in DR
mice (Fig. 4B; F = 9.976, p < 0.01), which was particularly
noticeable at 12 months of age (9 month of 30% DR). A significant
age related decline was also observed in leak respiration (F = 9.689,
p < 0.001; post hoc 4–21 month p < 0.001, 12 month vs 21 month
p = 0.013; treatment*age interaction F = 4.296, p < 0.05), with this
decline occurring later in DR mice compared to AL mice (i.e. after
12 months of age rather 4 months of age). Complex 1 driven
OXPHOS (Fig. 4C) was increased by DR (F = 24.335, p < 0.001). An
age-related decline in complex 1 driven OXPHOS was also seen in
AL mice from 4 months of age but this was delayed in DR mice (age:
F = 21.511, p < 0.001, treatment*age F = 12.891, p < 0.001 respec-
tively; post hoc 4 month vs 12 month p = 0.030, 4 month vs 21
month p = 0.003, 12 month vs 21 month p < 0.001). Maximal
respiration rate (simultaneous complex I and II OXPHOS, Fig. 4D)
showed a significant treatment (F = 26.411, p < 0.001), age
(F = 12.436, p < 0.001; post hoc 4 month vs 21 month p = 0.006,
12 month vs 21 month p < 0.001) and treatment*age (F = 8.183,
p < 0.001) interaction, being higher in DR than AL mice and
showing a delay in an age-related decline in DR mice. Complex II
driven OXPHOS respiration (observed following the titration of
complex I inhibitor rotenone) was similarly increased by DR
(Fig. 4E; F = 26.918, p < 0.001), showing a similar age-related
decline (F = 7.334, p < 0.01; post hoc 4 month vs 21 month
p = 0.049, 12 month vs 21 month p = 0.002) that was partially
attenuated in the DR mice (treatment*age interaction, F = 10.309,
p < 0.001). Finally we examined uncoupled respiration (Fig. 4F),
following the addition of carbonyl cyanide-p-trifluoromethoxy-
phenylhydrazone (FCCP). Uncoupled respiration was also elevated
in DR mice at all ages (F = 33.194, p < 0.001). An age-related
decline in uncoupled respiration was also observed (F = 10.980,
p < 0.001; post hoc 4 month vs 21 month p = 0.018, 12 month vs 21
month p < 0.001), which occurred earlier in AL mice than DR mice
(treatment*age interaction, F = 11.462, p < 0.001). These data
demonstrate that DR increased mitochondrial respiration in
permeabilised skeletal muscle myofibres. In addition, the age-
related declines in several respiratory states observed in AL mice
were delayed by DR. Respiratory control ratios (Fig. S3) were
unaffected by either treatment (F = 0.605, p = 0.441) or age
(F = 1.070, p = 0.353) in this study.

4. Discussion

It is well established that an individual’s mitochondrial
phenotype is malleable, responding to energetic requirements
and/or substrate delivery to maintain bioenergetic efficiency
(Brand, 2005; Hancock et al., 2011). Consequently, impairments
in this system can lead to profound health consequences, with
mitochondrial dysfunction appearing to play a central role in
ageing (Finley and Haigis, 2009; Hunt et al., 2006). As discussed
earlier, mitochondrial biogenesis is proposed as a key mechanism
underlying DR (Civitarese et al., 2007; Lopez-Lluch et al., 2006;
Nisoli et al., 2005). In agreement, several long-lived mutant mice
have increased (mRNA and protein) levels of mitochondrial-
associated proteins (Katic et al., 2007; Selman et al., 2008),
suggesting that alterations in mitochondrial biology may be a
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Fig. 3. DR significantly increased the mRNA expression levels of (A) Pgc-1a, (B) Nrf1, (C) Core 1 (Complex 3), (D) Cox IV and (E) mitochondrial Atps. Mice were 4, 12 or 21 months

of age (equivalent to 30% DR for 1, 9 or 18 months). Values (AU = arbitrary units relative to Tcea1) are expressed as means � SEM for N = 8 per group. Treatment effects
tttp < 0.001; age effects ap < 0.05, aap < 0.01, aaap < 0.001.
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conserved lifespan determinant. However, recently the notion that
mitochondrial biogenesis underlies DR was not supported in a
study of rats (Hancock et al., 2011). In accordance with this study,
we show that CS activity, a mitochondrial matrix enzyme used as a
marker of mitochondrial content, was unaltered between AL and
DR mice. However, a mid-life decline in CS activity in both AL and
DR mice was partially reversed by 21 months of age in DR mice
(30% DR for 18 months).

Despite CS activity in skeletal muscle being unaffected by DR,
several protein and transcriptional markers associated with
mitochondrial biogenesis were increased significantly by DR. DR
also attenuated many of the age-related declines in these
parameters observed in AL mice. Strikingly PCG-1a (total and
nuclear) protein and Pgc-1a mRNA levels were significantly
increased by DR, although with the exception of mRNA, levels
were comparable in 21 month old AL and DR mice. These findings
also suggest that alterations in PCG-1a protein during ageing
cannot be completely explained by changes at the transcript level,
again supporting the idea that post-transcriptional turnover of
PCG-1a leading to adaptive changes in mitochondrial function are
critical during DR and ageing (Anderson et al., 2008). PCG-1a acts
as a ‘master regulator of mitochondrial biogenesis’, with additional
roles in energy metabolism, metabolic health and muscular
function (Anderson and Prolla, 2009; Kraft et al., 2006; Lopez-
Lluch et al., 2008; Puigserver and Spiegelman, 2003; Wu et al.,
1999). The increase in PCG-1a levels in the nuclear, but not
cytosolic, fraction following DR is interesting as its presence in the
nucleus appears central to its ability to regulate mitochondrial
function (Anderson et al., 2008). Ectopic expression of PGC-1a in
muscle cells increased mitochondrial DNA content and increases
expression of genes associated with oxidative phosphorylation
(Wu et al., 1999). Increased PGC-1a expression also increased
mitochondrial membrane potential (Valle et al., 2005) and
increased myofibre O2 consumption (Wu et al., 1999), whilst
PGC-1a knockout mice have lower COX IV activity and reduced
mitochondrial respiration in skeletal muscle compared to controls
(Adhihetty et al., 2009). Perhaps surprisingly, TFAM protein levels
were unaffected by DR, although a significant age-related decline
was observed in both AL and DR mice. TFAM, which is co-activated
by PGC-1a and NRF-1, plays a key role in regulating mitochondrial
transcription and in the maintenance of mitochondrial copy
number (Arany et al., 2005; Joseph et al., 2006). Genes associated
with the respiratory chain (Nrf-1, Core 1 (Complex 3), Cox IV and
mitochondrial Atps) were all significantly increased following DR,
in common with previous findings (Civitarese et al., 2007; Nisoli
et al., 2005). However, it should be noted that whilst Nisoli et al.
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Fig. 4. DR increased mitochondrial respiration in permeabilised gastrocnemius myofibres in mice and partially attenuated age-related declines in mitochondrial respiration

observed in AL mice. Resting state (A; without any substrate addition). (B) Leak respiration, (C) complex 1 driven oxidative phosphorylation (OXPHOS), (D) maximal

respiration rate (simultaneous complex I and II driven OXPHOS, (E) complex II driven OXPHOS respiration and (F) uncoupled respiration (see Section 2 for the specific

substrates used). Mice were 4, 12 or 21 months of age (equivalent to 30% DR for 1, 9 or 18 months). Values are expressed as mean � SEM for N = 7 per group. All values are

expressed relative to citrate synthase activity. Treatment effects ttp < 0.01, tttp < 0.001; age effects aap < 0.01, aaap < 0.001.
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(2005) observed significant increases in CS levels in a range of
tissues, they did not examine skeletal muscle. Whilst Pgc-1a, Core

1 and Cox1V showed a similar age-related decline to total and
nuclear PGC-1a, neither Nrf1 nor Atps showed any such decline,
perhaps suggesting that the specific relationship between tran-
scription factors and their target genes may alter during ageing.
Interestingly, we also report that COX IV content, a subunit of the
electron transport system (ETS), in contrast to CS, was significantly
increased in our DR group (Fig. 5). COX IV content was also
significantly reduced with ageing, with this enzyme previously
reported to be particularly prone to age-related decreases in
skeletal muscle relative to other mitochondrial enzymes (Hepple
et al., 2005). Despite this age-related decline, the DR-related
increase meant that at 21 months of age DR mice still had COX IV
levels similar to 4 month old AL mice. Hancock et al. (2011)
reported no effect of DR on total PGC-1a levels in contrast to our
findings. The reason for this lack of agreement is unclear, but
differences in the species used (rat vs mouse), the tissue studied
(fore vs hindlimb skeletal muscle) and the duration of DR (3 vs 1, 9
and 18 month) may be important.

Whilst mitochondrial content was unaltered, our protein and
transcriptional data showed clear changes following DR, in
agreement with other studies (e.g. Civitarese et al., 2007). To
examine whether these changes impacted on mitochondrial
function, we employed high resolution respirometry (HRR) in
permeabilised myofibres. In common with other studies (for
review see Lopez-Lluch et al., 2008), a general decline in
mitochondrial respiration was seen with advancing age that was
partially rescued by DR. DR also significantly increased mitochon-
drial respiration in skeletal muscle across a range of mitochondrial
respiratory states relative to AL mice. In particular, striking
differences between AL and DR mice was observed during the mid-
time-point (12 months of age, equating to 9 months of 30% DR). As
discussed earlier, the directional effects of DR on mitochondrial
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Fig. 5. Cytochrome c oxidase (COX IV) content was significantly increased by DR in
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respiration appear ambiguous (Bevilacqua et al., 2004, 2005;
Gredilla et al., 2001; Hagopian et al., 2011; Lal et al., 2001; Lambert
et al., 2004b; Lopez-Lluch et al., 2006; Nisoli et al., 2005; Sohal
et al., 1994; Weindruch et al., 1980). The lack of consensus may be
due to several factors, e.g. model organism, tissue-specificity,
isolation protocol, DR duration, which are reviewed in detail
elsewhere (Hunt et al., 2006; Picard et al., 2010). However, to our
knowledge, ours is the first study employing HRR to simulta-
neously examine the impact of both DR and ageing on
mitochondrial function in permeabilised myofibres of mice. This
approach may give a better perspective on the in situ conditions
encountered by mitochondria during DR and ageing (Picard et al.,
2010). An increase in respiration during a period of reduced energy
consumption (i.e. DR) may be difficult to reconcile (see Hancock
et al., 2011), although there are some caveats to this perceived
bottleneck. The impact of DR on metabolic rate is confounded by
associated changes in body mass and composition (see Even et al.,
2001; Ferguson et al., 2008; Hempenstall et al., 2010; Selman et al.,
2005). Indeed, whilst total energy consumption is reduced
following DR, total energy expenditure was higher than that
predicted in DR rats from their altered body composition (Selman
et al., 2005). In addition, resting metabolic rate was not
significantly altered in male C57BL/6 mice following appropriate
corrections for body mass changes (Hempenstall et al., 2010). We
suggest that the energetic constraints experienced during DR may
not be universally similar across all tissues during DR. That is,
individual tissues that contribute proportionately more or less to
total metabolism, may not respond metabolically to DR in exactly
the same manner (see Lambert et al., 2004b).

Our data strongly supports other studies (Baker et al., 2006;
Hepple et al., 2005, 2006) suggesting that DR may attenuate age-
related declines in skeletal muscle physiology through altering
mitochondrial function. However, we saw no evidence that
mitochondrial content was increased (CS activity), in common
with earlier studies (Civitarese et al., 2007; Hancock et al., 2011),
despite a clear increase in mitochondrial respiration in following
DR in our study. However, such an uncoupling of mitochondrial
content and function has been reported in other studies. For
example, mitochondrial mass in wild type C. elegans was unaltered
by age, despite a reduction in key mitochondrial proteins and a
decline in energy production (Brys et al., 2010). In addition,
changing requirements for ATP can occur via specific alterations in
the synthesis and/or activities of specific respiratory chain
components (Herzig et al., 2000). We suggest that DR may
increase the number of available entry points for electrons through
targeted biogenesis of ETS components, rather than mitochondrial
biogenesis per se. An increase in ETS components per mitochondria
without an increase in mitochondrial content was recently
reported in long-lived yeast (Mittal et al., 2009). The authors
went on to suggest that this strategy was more efficient as it
reduced both ‘electron stalling’ and ROS production. In support, an
age-related decline in complex IV high affinity sites that was
attenuated by DR has been reported in skeletal muscle of mice
(Feuers, 1998), leading to the suggestion that age-associated
obstruction of ETS binding sites would inhibit electron flow,
resulting in mitochondrial dysfunction and increased ROS.
Similarly, increased complex IV turnover at maximal O2 consump-
tion resulting in higher O2 flux was seen in skeletal muscle from DR
rats (Hepple et al., 2005). In terms of DR and the energetic
constraints argument discussed earlier, Mittal et al. (2009) propose
that up-regulation of specific ETS subunits will be energetically
less costly than the synthesising of new mitochondria, although
this ‘ETS biogenesis’ will still maintain optimal and efficient
mitochondria. Indeed, mitochondrial turnover to maintain optimal
efficiency may also be important without any need for an overall
increase in mitochondrial content, with fractional synthesis rates
of protein in some muscles (Zangarelli et al., 2006) and
mitochondrial turnover in liver (Miwa et al., 2008) being increased
by DR. DR was also recently reported to maintain mitochondrial
protein synthesis (fractional synthesis) in mice over a 6-week
period in liver, heart and skeletal muscle but decreased cellular
proliferation (DNA synthesis) over this same period (Miller et al.,
2011). This may help explain our finding that whilst CS activity did
not alter with DR, COX IV content, a subunit of the electron
transport system (ETS), was significantly increased by DR.

5. Conclusions

We demonstrate that DR does not increase mitochondrial
content, as determined by CS activity, in skeletal muscle of mice.
However, DR increased PGC-1a levels, increased mRNA levels of
several mitochondrial-associated genes, increased COX IV content
and increased mitochondrial respiration in permeabilised myo-
fibres. DR also attenuated the age-related decline in several of
these parameters that was observed in AL mice. Thus, we suggest
that DR induces an adaptive response via PGC-1a (Anderson et al.,
2008) that helps maintain a functionally ‘efficient’ ETS and hence
mitochondria in skeletal muscle, possibly through increased
turnover of mitochondria rather than any increase in mitochon-
drial number per se. We propose that these changes are critical for
the ability of DR to attenuate the age-related declines in
mitochondrial respiration observed in AL mice. We also propose
that studies examining the turnover of mitochondrial in vivo will
be critical to our further understanding of how DR and ageing
impact on mitochondria and on mitochondrial function.
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